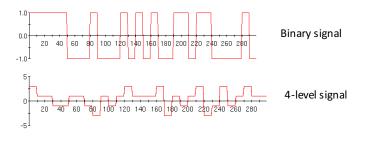

Wireless Physical Layer

Basic Elements Contd.

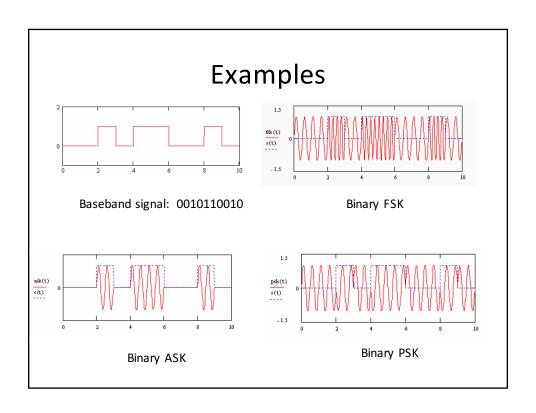

- Source Encoding
 - Encode information into bits.
- · Channel Encoding
 - Add enough redundancy so that some basic reliability is achieved.
- Modulation
 - Map the digital info on signal waveform
- Channel
 - Physical medium that carries the signal. Characterized by noise.

Noise in Wireless Channel

- Noise causes signal degradation via a variety of mechanisms. Eventually causes bit errors.
- Various sources of noise
 - Quantization noise at the receiver
 - Thermal noise at the receiver
 - Radio signals already present in nature
- Noise is additive meaning adds to the received signal.
- Typically modeled as a random phenomenon.
 - Additive White Gaussian Noise (AWGN) is a very common model.

Basics of Signal

- `Signal'
 - Physical quantity that varies over time.
 - Conveys information.
- Information signal
 - Signal representing information to be transmitted.



Carrier

- Information signal often can't be transmitted directly over RF.
 - Frequency is often low. Hard to transmit low frequency with enough power. May need impractically large antenna.
 - All frequencies do not propagate well in a given environment.
 - Interference avoidance will be hard as similar information signals have similar frequencies.
- Information signal (also called 'baseband') is thus carried over a 'carrier' signal.
 - Carrier is just a sinusoid of a much higher frequency.
 - Frequency carefully chosen so that it is allowed by regulation, propagation is good, antennas can be reasonable, etc.

Modulation

- Modulation is the process of mapping baseband signal on the carrier.
- Basic approach vary a parameter of the carrier sinusoid to represent baseband signal.
- Three basic choices
 - Amplitude-Shift Keying (ASK)
 - Frequency-Shift Keying (FSK)
 - Phase-Shift Keying (PSK)

Frequency and Bandwidth

• Modulation is like multiplication

$$w_i(t) = s_i(t) \cos(2\pi f_c t)$$

Modulated signal Baseband signal

- Carrier signal
- Question: What is the frequency of the modulated signal? What is the bandwidth?
- Note that carrier frequency is f_c and bandwidth is zero.

Concept of Time and Frequency
Domains

Fourier Series

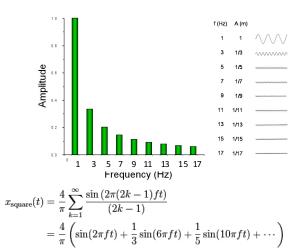
- Fourier series Any periodic function can be written as an infinite sum of sinusoids.
- If periodic function f(t) has a period 2L, then

$$f(t) \ = rac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cosigg(rac{n\pi t}{L}igg) + \sum_{n=1}^{\infty} b_n \sinigg(rac{n\pi t}{L}igg)$$

• Fourier series interactive demo:

http://www.intmath.com/fourier-series/fourier-graphapplet.php

Time and Frequency Domain


• If periodic function f(t) has a period 2L, then

$$f(t) \; = rac{a_0}{2} \, + \, \sum_{n=1}^{\infty} a_n \cos\!\left(rac{n\pi t}{L}
ight) \, + \, \sum_{n=1}^{\infty} b_n \, \sin\!\left(rac{n\pi t}{L}
ight)$$

- Then, we can represent *f*(*t*) in the frequency domain:
 - At each harmonic, there is some "amount" of signal. The amount of represented as amplitude.

Square Wave Example

Frequency domain representation of a square wave of frequency 1 Hz. Amplitudes are shown normalized to the first harmonic.

Takeaway

- Unless the signal is a pure sinusoid, there are many frequencies in the signal.
- So far, we considered only periodic signals. But most signals are not periodic.
- An extension of this technique (Fourier Transform) can also be used for non-periodic signals.
 - The math assumes that period tends to infinity.

Fourier Transform

- Need to know a little about complex numbers.
- Use Euler formula: $e^{j\theta} = \cos \theta + j \sin \theta$
- Get a different but equivalent representation of what we had before for periodic functions:

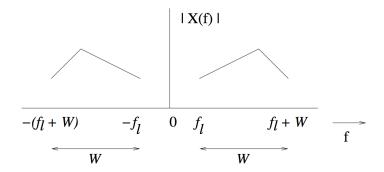
$$f(t) = \sum_{n = -\infty}^{n = \infty} A_n e^{j(2\pi nt/L)}$$

- A_n has a simple relationship with coefficients a_n and b_n that we have seen earlier.
- See http://mathworld.wolfram.com/FourierSeries.html

Fourier Transform (contd)

ullet A_n is easily computed given the periodic signal

$$A_n = \frac{1}{L} \int_{-L/2}^{L/2} f(t)e^{-j(2\pi nt/L)}dt$$

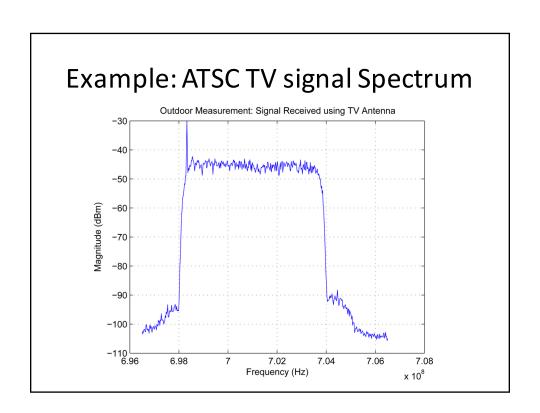

- A_n is the "amount" of signal at frequency $2\pi nt/L$
- When signal is not periodic, imagine $L \to \infty$. A_n becomes continuous.

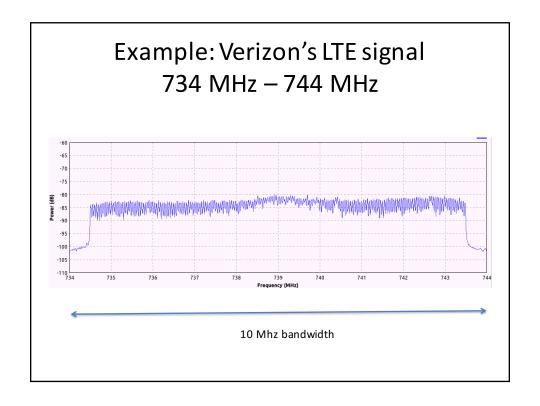
Fourier Transform (contd)

$$F(f) = \int_{-\infty}^{\infty} f(t)e^{-j(2\pi ft)}dt$$

- *F*(*f*) is the Fourier Transform of the time domain signal *f*(*t*).
- F(t) is the time domain representation, F(f) is the frequency domain representation.
- See: http://mathworld.wolfram.com/FourierTransform.html

Bandwidth


Frequency range (W) for which the Fourier transform values are non-zero.


Power and Energy

Energy content of signal $\ E=\int_{t_1}^{t_2}|f(t)|^2dt$

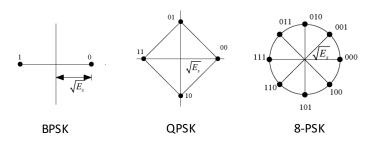
Divide by time to determine power.

One can determine these quantities via the Fourier transform as well.

Concepts to be familiar with

- Band or channel a specific range in the RF spectrum (i.e., range of frequencies) allocated to a specific technology or used for specific communication.
- Bandwidth of a signal the range of frequencies in the frequency domain representation of the signal that has non-zero value.
- Power Signal amplitude squared (averaged over time for average power).
- Energy signal amplitude squared integrated over time. (Note power and energy are related concepts. Power is energy per unit time.

Decibel Notation


- Power is often expressed in decibel notation.
- dB is ratio of two powers in identical units expressed as

$$10\log_{10}\frac{P_1}{P_2}$$

- But this only provides a ratio of two powers.
- For use in expressing absolute power, use a reference $P_2 = 1$ mW. Then P_1 is in dBm.

M-ary Modulation

- In binary modulation each `symbol' sends 1 bit.
 But the idea can be extended to M bits per symbol.
- Take example of PSK. Create M phases by equally dividing 2π .

Mathematically..

$$s_{i}(t) = \sqrt{\frac{2E_{s}}{T}} \cos \left(\frac{2\pi f_{c}t + \frac{2\pi i}{M}}{\frac{Changing}{with time}} \right) \qquad i = 0, 1, \dots M$$

Constant amplitude

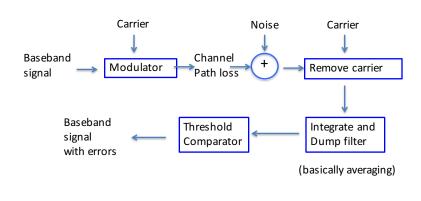
fc is carrier frequency

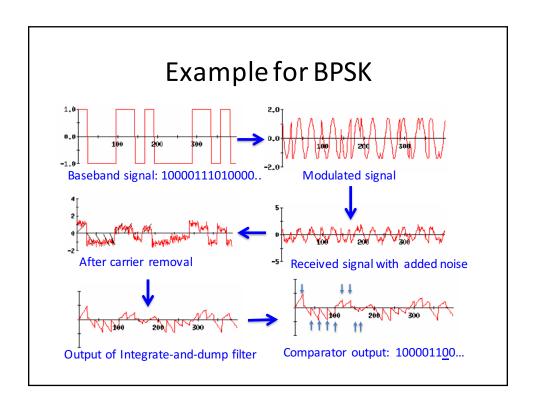
Phase depending on information bits represented by *i*

T is the 'symbol time'. *Es* is the 'energy per symbol'.

'Energy' = signal 'power' integrated over time 'Power' = signal squared

Back to Modulation


More Complex Modulations


 Mix both phase and amplitude modulations – quadrature amplitude modulation (QAM).

• Example: 16-QAM 1101 1001 0001 0101 4 bits per symbol Symbols are mapped in 1100 1000 0000 0100 a Gray code 1010 0010 0110 1110 Higher order QAMs possible, such as 64-QAM, 256-QAM. Technology example: 802.11n 1111 0011 0111 1011 supports BPSK, QPSK, 16-16-QAM QAM, 64-QAM, 256-QAM 3 amplitudes, 12 phases

Noise Causes Bit Errors

• We use a simple example – BPSK modulation

