
Impact of Device Performance on Mobile Internet QoE
Mallesham Dasari, Santiago Vargas, Arani Bhattacharya, Aruna Balasubramanian

Samir R. Das, Michael Ferdman
Department of Computer Science, Stony Brook University

ABSTRACT
A large fraction of users in developing regions use relatively in-
expensive, low-end smartphones. However, the impact of device
capabilities on the performance of mobile Internet applications has
not been explored. To bridge this gap, we study the QoE of three
popular applications – Web browsing, video streaming, and video
telephony – for different device parameters. Our results demon-
strate that the performance of Web browsing is much more sensi-
tive to low-end hardware than that of video applications, especially
video streaming. This is because the video applications exploit spe-
cialized coprocessors/accelerators and thread-level parallelism on
multi-core mobile devices. Even low-end devices are equipped with
needed coprocessors and multiple cores. In contrast, Web browsing
is largely influenced by clock frequency, but it uses no more than
two cores. This makes the performance of Web browsing more
vulnerable on low-end smartphones. Based on the lessons learned
from studying video applications, we explore offloading Web com-
putation to a coprocessor. Specifically, we explore the offloading of
regular expression computation to a DSP coprocessor and show an
improvement of 18% in page load time while saving energy by a
factor of four.

CCS CONCEPTS
•General and reference→Experimentation; •Human-centered
computing→Ubiquitous andmobile computing;Ubiquitous
and mobile devices; Mobile Applications;

KEYWORDS
Mobile Applications, Quality of Experience, Hardware Accelerators.

ACM Reference Format:
Mallesham Dasari, Santiago Vargas, Arani Bhattacharya, Aruna Balasubra-
manian, Samir R. Das, Michael Ferdman. 2018. Impact of Device Performance
on Mobile Internet QoE. In 2018 Internet Measurement Conference (IMC ’18),
October 31-November 2, 2018, Boston, MA, USA. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3278532.3278533

1 INTRODUCTION
Mobile smartphones have now penetrated a significant fraction
of the world’s population. They vary widely in terms of cost and
performance. For example, the costs of smartphones currently on

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IMC ’18, October 31-November 2, 2018, Boston, MA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5619-0/18/10. . . $15.00
https://doi.org/10.1145/3278532.3278533

0

10

20

P
LT

(S
ec

on
ds

)

Left Y-axis

0

2

C
lo

ck
(G

H
z)

2011 2012 2013 2014 2015 2016 2017 2018
Timeline

0

5

10

M
em

or
y

(G
B

)

0

1

2

P
ag

e
S

iz
e

(M
B

)

Right Y-axis

0

5

10

C
or

es

0

5

10

O
S

V
er

si
on

Figure 1: Evolution of Web page performance and device pa-
rameters over the last 8 years. The growth in device perfor-
mance is not on parwith the growth of application demands.

the market range between $50 – $1000 [1, 7]. The cost largely
depends on the hardware specifications. A $600 phone such as
OnePlus5 has eight cores, running up to a 2.4 GHz clock frequency
and 6GB RAM, whereas a cheaper $60 phone (e.g., Dell Venue Pro)
has only two cores up to a 1GHz clock frequency and 512MB RAM.

A key question arises: how much of an application’s quality
of experience (QoE) depends on the phone’s hardware given that
widely different phoneswith very different price points are available
in the market? This question is specifically important because it is
well known that compute is a key performance bottleneck for mobile
applications such as browsing [23, 31]. However, it is not well
understood which aspect of computation/hardware specifications
is significant to performance. Knowing the hardware component
that has the most impact on end-user performance is crucial to
designing better phones under a budget.

The problem is more acute among low-end phones. As an exam-
ple, our results show that mobile Web page loads on two popular
phones in India, the Intex Amaze 4 (≈$60) and Gionee (≈$150), are
5× to 3× worse, respectively, than the Google Pixel2 (≈$700) under
the same network conditions (§2). The problem is not specific to
low-end phones alone. Despite the improvements in hardware, the
QoE of applications has not improved because of increased applica-
tion complexity and a mismatch between QoE requirements and
hardware enhancements. See Figure 1, which uses the page load his-
tory [4] and device data mined from over 480 Android smartphone
specifications over the past 8 years. The figure shows that page load
times (PLT) have increased by four × despite the improvements in
devices, hardware, and networks. This difference also underscores
the importance of mobile web experience on low-end hardware.

To address the question posed, we characterize the QoE of com-
monmobile applications under four different hardware components:
(1) clock frequency, (2) memory, (3) number of cores, and (4) An-
droid governors. (The governors control the CPU frequency) Our
goal is to understand how each of these device parameters affect

https://doi.org/10.1145/3278532.3278533
https://doi.org/10.1145/3278532.3278533

IMC ’18, October 31-November 2, 2018, Boston, MA, USA M. Dasari et al.

Intex
Amaze+

Gionee
F103

Google
Nexus4

Galaxy
S2

Google
Pixel C

Galaxy
S6-Edge

Google
Pixel2

0.0

2.5

5.0

7.5

10.0

12.5

P
LT

(S
ec

on
ds

)

(a) Web Browsing (Google Chrome)

Intex
Amaze+

Gionee
F103

Google
Nexus4

Galaxy
S2

Google
Pixel C

Galaxy
S6-Edge

Google
Pixel2

0

2

4

6

S
ta

rt
-u

p
L

at
en

cy
(S

ec
on

ds
)

0.0

0.2

0.4

0.6

0.8

1.0

S
ta

ll
R

at
io

Start-up Latency

Stall Ratio

(b) Video Streaming (YouTube)

Intex
Amaze+

Gionee
F103

Google
Nexus4

Galaxy
S2

Google
Pixel C

Galaxy
S6-Edge

Google
Pixel2

0

10

20

30

40

F
ra

m
e

R
at

e

(c) Video Telephony (Skype)

Figure 2: Mobile application performance across diverse devices: (a) Web browsing, (b) Video Streaming, (c) Video Telephony.
The horizontal axis shows the device type; their corresponding specifications are tabulated in Table 1.

Device Application Number OS Clock GPU RAM Release Release
Name Processor of Cores Version Min-Max (MHz) Type Size (GB) Date Cost

Intex Amaze+ Spreadtrum SC9832A 4 6.0 300-1300 Mali-400 1 Jan, 2017 $60
Gionee F103 MediaTek MT6735 4 5.0 300-1300 Mali-T720 2 Oct, 2015 $150

Nexus4 Snapdragon S4 Pro 4 5.1.1 384-1512 Adreno 320 2 Nov, 2012 $200
SG S2-Tab Exynos 5433 8 5.0.2 400-1300 Mali-T760 3 Sept, 2015 $450
Pixel C-Tab Tegra X1 4 8.0.0 204-1912 Maxwell 3 Dec, 2015 $600

Pixel2 Snapdragon 835 8 8.0.0 300-2457 Adreno 540 4 Oct, 2017 $700
SG S6-edge Exynos 7420 8 6.0.1 400-2100 Mali-T760 3 April, 2015 $880

Table 1: Mobile devices used in our experiments and their corresponding specifications.

the QoE of three of the most popular mobile applications: Web
browsing, video streaming, and video telephony.

We find that Web and video applications have very different
architectures. As a result, different hardware specifications affect
the two classes of applications differently. For example, Web appli-
cations are significantly affected by clock speeds, but video appli-
cations are virtually unaffected. In contrast, changing the number
of cores affects video applications but has no significant impact
on Web applications. To dig deeper, we isolate the effect of the
hardware parameter on the different aspects of the applications to
shed light on not only how the hardware component affects the
QoE but also why.

Our key finding is that Web performance is impacted by low-
end phones. In particular, slow clock speeds affect Web browsing
adversely. Web page loads slow down by 5× when clock frequency
drops from 1512 MHz to 384 MHz. Interestingly, video applications
are largely unaffected by this change even though video process-
ing is a computationally intensive operation. This is because video
decoding uses dedicated hardware decoders, available even on low-
end phones. Also, video applications use parallel operations among
multiple CPU cores for post-processing (such as muxing and de-
muxing of audio/video). In contrast, web applications do not use
multiple cores effectively. Given that even low-end phones have
multi-core processors, the performance of video applications is
impacted little on low-end phones, but the performance of Web
applications is severely affected.

Finally, similar to video applications, we experiment with of-
floading Web computation (hardware offloading) to an existing
DSP coprocessor/hardware accelerator on the Nexus4 phone. We
find that leveraging hardware offloading is a promising alterna-
tive to improving Web performance under a slow CPU clock. Our
preliminary analysis with offloading only regular expression com-
putations shows an improvement of 18% in page load time along
with a 4× reduction in energy.

2 QOE ACROSS LOW & HIGH-END DEVICES
As a first step, we study the performance of the three Internet
applications –Web browsing, Video streaming, and Video telephony
– across seven different smartphones. The phones are chosen so
that there is significant diversity in terms of hardware/OS and cost
(Table 1). The cost ranges from $60 to $880, and the maximum CPU
clock frequencies range from 1.3 GHz to 2.4 GHz. We first describe
the default experimental setup before turning to the results.

2.1 Measurement Setup
Web Browsing:Wemeasure browsing performance overChrome
63.0.3239.111 in terms of page load time (PLT). PLT is the time
elapsed between when the URL is sent to the server and when the
DOMLoad event is fired [36]. We load the top 50 Web pages from
Alexa [38], clear the cache (including DNS), and estimate the aver-
age PLT. We use the WProf tool [36] to analyze the critical path of
the page load process and break down the critical path into compu-
tation and network activities. Compuation activities include HTML
parsing, Javascript evaluation, and rendering. Network activities
involve requesting and downloading the objects on the Web page
(such as html, css, js, and image files). We automate the page loads
for repeatability using the Chrome remote debugging protocol [34]
over the Android Debug Bridge (ADB) [2].
Video Streaming:We use YouTube to measure video streaming
performance using two QoE metrics: start-up latency (network-
centric) and stall ratio (device-centric). Start-up latency is the time
fromwhen the request was issued to when the application starts dis-
playing frames. The stall ratio is the amount of time the video stalls
during the playback expressed as a fraction of playback time. Both
of these metrics can be measured using YouTube player APIs [3].
The performance is measured over a 5 min FullHD (1080p) video
clip. Note that the received video quality is the same in all the exper-
iments because we have high network bandwidth. We use ADB [2]
to programmatically request the video content for repeatability.

Impact of Device Performance on Mobile Internet QoE IMC ’18, October 31-November 2, 2018, Boston, MA, USA
38

4

48
6

59
4

70
2

81
0

91
8

10
26

11
34

12
42

13
50

14
58

15
12

Clock Frequency (MHz)

0

5

10

15

20

25

P
LT

(S
ec

on
ds

)

(a) Clock Frequency

0.5 1 1.5 2
Memory (GB)

0

2

4

6

8

10

P
LT

(S
ec

on
ds

)

(b) Memory

1 2 3 4
Number of Cores

0

2

4

6

8

10

P
LT

(S
ec

on
ds

)

(c) Number of Cores

PF IN US OD PW
Governors

0

2

4

6

8

10

P
LT

(S
ec

on
ds

)

(d) Governors

Figure 3: Impact of device parameters on Web browsing (Google Chrome)

Video Telephony: We use Skype to measure the performance
of video telephony. We measure QoE in terms of call setup delay
(network-centric) and frame rate (device-centric) metrics. The frame
rate is measured as the number of frames shown per second and
call setup delay is the time it takes for the client to get the response
once the receiver answers the call. Because Skype does not provide
APIs to extract such QoE information, we use an indirect approach.
We configure Skype to display the frame rate and call setup delay
on the screen during the video call. Similar to [9], we screen-record
the Skype call using the AZ screen recorder [28] and extract the
QoE information using an optical character recognition tool [33].

Because Skype is an interactive application, it requires an active
participant on both ends. In our setup, when the Skype call is
placed from the mobile device to a laptop, the laptop runs a virtual
webcam [21] that plays a video file in Skype instead of the camera
feed; at the mobile end, the video can be viewed during the Skype
call. To automate (starting and ending) the Skype calls, we use the
AndroidViewClient (AVC) library [5].
Network Setup: Because the focus of this work is to measure
the impact of the device hardware, the experiments are setup to
minimize the impact of the network and the Web/video servers. We
host the video and pages on a desktop on our LAN created using an
Aruba Access Point (AP) with a 72Mbps link speed, 10ms RTT, and
0% loss. The mobile device connects to the server over our LAN.
For each workload, we repeat the experiment 20 times and present
the average and standard deviation. For each experiment, we use
default values for non-treatment variables.

2.2 QoE Across Devices
Fig. 2 shows the performance of the three applications across the
devices. Based on the device model, a significant difference in per-
formance exists even though all experiments are done in the same
network conditions.

For Web page loads (Fig. 2a), there is a 7 sec difference in average
PLT between the low-end Intex Amaze+ phone and the high-end
Google Pixel2. The standard deviation in PLT is also higher (>3 sec-
onds) in the Intex Amaze+ than in the Pixel2. This must stem from
the device itself because the network conditions remain unchanged.

In the case of YouTube (Fig. 2b), a linear increase occurs in start-
up latency from 2 to 5 seconds from the high-end to low-end devices.
However, after the start-up latency, there is zero impact on the stall
ratio. In effect, when the user waits for the video to start, there
is practically no difference in QoE between the low-end and the
high-end device. For Skype (Fig. 2c), the frame rate decreases from
30fps to 18fps between the high- and low-end devices.

For the most part, application QoE correlates with device cost.
A cheaper device provides poorer performance. The only outlier is
the Pixel2, which outperforms the SG S6-edge despite being less
expensive. The underlying reason for this difference is how these
two phones use big and little cores in the big.LITTLE architecture
to trade between performance and power consumption.

Based on this study, our goal is to (i) understand why video
applications are not affected by low-end phones and transfer the
lessons learned to the Web, and (ii) study which hardware compo-
nent has the greatest effect on performance both for Web and video
applications to inform future hardware design.

3 IMPACT OF DEVICE PARAMETERS
Four device parameters related to available resources (Table 1) can
potentially impact application performance – CPU clock, mem-
ory capacity, number of cores, and Android governor. The first
three parameters are self-explanatory. The Android governor is
a set of scaling algorithms used by Android to change the clock
frequency based on the CPU utilization and battery life. We observe
four common frequency governors used by most Android phones:
the Ondemand (OD), Powersave (PW), Interactive (IN), and Per-
formance (PF) governors, each with a different trade-off between
power and performance [12].
Experimental Setup: The effect of a given resource is isolated
by changing its value while keeping the remaining setup constant.
We change the clock, number of cores, and governors using ADB
commands on a rooted phone. We change the memory capacity
by creating RAM disks [19] from available memory and assigning
these RAM disks to the application. The experiments are repeated
over three phones—the Pixel2, Intex Amaze+, and Nexus4. These
three phones were chosen to represent a high-end, low-end, and
medium-end phone. We present the results from Nexus4 in detail
and summarize the results from the other two for brevity. Similarly,
for brevity, we present the PLT results only for the Chrome browser.
We have experimented with two other browsers (Firefox and Opera
Mini), which qualitatively have the same experience.

Figures 3-5 show the impact of these parameters – CPU clock,
memory, number of cores, and governors onGoogle Chrome, YouTube,
and Skype. The experimental setup is the same as that of §2.1.

3.1 QoE of Web Browsing
The PLT increases by 4× when the CPU clock frequency drops
from 1512MHz to 384MHz (Fig. 3a). This trend is similar to that
of Fig. 2a, where the page loads much slower on low-end devices
than on higher-end devices. This performance degradation is due

IMC ’18, October 31-November 2, 2018, Boston, MA, USA M. Dasari et al.
38

4

48
6

59
4

70
2

81
0

91
8

10
26

11
34

12
42

13
50

14
58

15
12

Clock Frequency (MHz)

0

2

4

6

8

10

S
ta

rt
-u

p
L

at
en

cy
(S

ec
on

ds
)

0.0

0.2

0.4

0.6

0.8

1.0

S
ta

ll
R

at
io

Start-up Latency

Stall Ratio

(a) Clock Frequency

0.5 1 1.5 2
Memory (GB)

0

2

4

6

8

10

S
ta

rt
-u

p
L

at
en

cy
(S

ec
on

ds
)

0.0

0.2

0.4

0.6

0.8

1.0

S
ta

ll
R

at
io

Start-up Latency

Stall Ratio

(b) Memory

1 2 3 4
Number of Cores

0

2

4

6

8

10

S
ta

rt
-u

p
L

at
en

cy
(S

ec
on

ds
)

0.0

0.2

0.4

0.6

0.8

1.0

S
ta

ll
R

at
io

Start-up Latency

Stall Ratio

(c) Number of Cores

PF IN US OD PW
Governors

0

2

4

6

8

10

S
ta

rt
-u

p
L

at
en

cy
(S

ec
on

ds
)

0.0

0.2

0.4

0.6

0.8

1.0

S
ta

ll
R

at
io

Start-up Latency

Stall Ratio

(d) Governors

Figure 4: Impact of device parameters on video streaming (YouTube)

to two reasons: a slower clock results in (1) slower page processing
(e.g., parsing, scripting, rendering, and painting) and (2) slower
packet processing (§4.2) that in turn slows down the downloading
of objects.

We estimate the time on the critical path involving computation
and network activities using the WProf tool [23, 36]. Network time
on the critical path increases from an average of 2 seconds when
the clock speed is 1512MHz to 6 seconds when the clock speed is
decreased to 384MHz – a 66% increase. Compute time increases by
76% for the same CPU slowdown.

We find that compute time increases even more compared to the
network time for more complex Web pages. We further dissect the
computational activities to find the root cause of the application
bottlenecks.We observe that scripting time increases themost as the
CPU clock slows down; it accounts for 51% of the overall compute
times at high CPU frequencies and 60% at slower CPU frequencies.
The layout and painting times account for only 4% of the compute
time on the critical path. To confirm the impact of slower Javascript
execution, we experiment with different categories of Web pages
(e.g., business, health, shopping, news, and sports) and find that
news and sportsWeb pages are affected the most (about 6×) because
they have more scripting than the other categories.

Apart from the clock frequency, the PLT is not affected by other
parameters significantly. For example, the PLT increases by about
2×whenmemory is reduced from 2GB to 512MB. The PLT increases
by roughly 50% when the Powersave governor is used relative to
the others. This is because this governor prefers the slowest clock
to trade off performance for power savings.

PLT changes only modestly when the number of cores is reduced
from four to one. This is because the browser does not exploit the
thread-level parallelism on multi-core mobile devices. We confirm
this observation by measuring the CPU utilization across cores and
find that, during Web page loads, only two of the cores are utilized
irrespective of the number of cores available (see Fig. 3c).
Takeaway1: Web browsing underutilizes the multiple cores and
suffers significantly with slower CPU clock. A key component of
improving Web page loads, especially with a slow CPU clock, is to
improve the efficiency of scripting.

3.2 QoE of Video Streaming
Fig. 4 shows the start-up latency (network-centric) and stall ratio
(device-centric) metrics of YouTube for the four device parameters
on Nexus 4. The start-up latency increases from 1.2 to 3.5 seconds
as the clock speed decreases; however, there is no impact on the
stall ratio. This trend is similar to the one observed in Fig. 2b across
low-end and high-end phones.

In practice, the stall ratio is a more important QoE metric be-
cause the start-up latency is only a one-time effect. The stall ratio is
not affected by a slow CPU even though network throughput drops
when the CPU is slow. The reasons for this are several video-specific
optimizations: i) most smartphones (even low-end phones) support
hardware-based video coding. The video coding is offloaded to ded-
icated hardware accelerators and are not bottlenecked by a slow
CPU. Moreover, YouTube serves device-specific video content (e.g.,
it does not stream FullHD video on an Intex phone). ii) after video
decoding, the post-processing tasks such as muxing and demux-
ing of audio and video indeed happen on the CPU, which could
potentially be impacted by a slower clock. The Android multime-
dia framework is highly parallelized and exploits multiple cores,
unlike Web browsing, and thus, the impact of the slower clock is
not prominent. We confirm this observation by measuring the CPU
utilization during the video experiments across cores. Figure 4c
further shows that the performance of video applications degrades
as the number of cores decreases. There is an increase of 4 seconds
in start-up latency as well as a 15% increase in the stall ratio under
a single core. iii) YouTube and other streaming services [10, 24]
prefetch video content; YouTube prefetches 120 seconds’ (called
read-ahead time) worth of content. Therefore, even under slower
clocks, the read-ahead time is reached within 40 seconds of the
video start-up, resulting in zero stalls.

For memory and governors, YouTube has a similar trend in start-
up latency as Web browsing does, with zero stalls.
Takeaway2: Specialized coprocessors reduce the role of the general-
purpose CPU for video streaming. To the extent that the CPU is used,
multiple cores can be exploited. Thus, the impact of low-end phones
is largely masked for the QoE of video streaming because even low-
end phones have at least two cores and specialized coprocessors.

3.3 QoE of Video Telephony
The key difference between streaming and telephony is that tele-
phony is interactive. This means that, unlike streaming, video
frames cannot be prefetched by the application. We measure the
QoE with the call setup delay (network-centric) and frame rate
(device-centric) metrics as described in §2.1. Fig. 5 shows the effect
of device parameters on QoE during the Skype video call.

We observe an 18-second increase in call setup delay when the
CPU clock drops from 1512 MHz to 384 MHz. This effect is due
to the increase in network packet processing caused by slow CPU
speeds because the external network condition remains the same.
The frame rate drops to 17 frames per second (fps) at slow CPU
speeds from 30 fps at high CPU speeds. The decreased frame rate
occurs despite the fact that video coding is offloaded to hardware

Impact of Device Performance on Mobile Internet QoE IMC ’18, October 31-November 2, 2018, Boston, MA, USA

38
4

48
6

59
4

70
2

81
0

91
8

10
26

11
34

12
42

13
50

14
58

15
12

Clock Frequency (MHz)

0

5

10

15

20

25

30

C
al

l
S

et
up

D
el

ay
(S

ec
on

ds
)

0

10

20

30

40

F
ra

m
e

R
at

e

Call Setup Delay

Frame Rate

(a) Clock Frequency

0.5 1 1.5 2
Memory (GB)

0

5

10

15

20

25

30

C
al

l
S

et
up

D
el

ay
(S

ec
on

ds
)

0

10

20

30

40

F
ra

m
e

R
at

e

Call Setup Delay

Frame Rate

(b) Memory

0.5 1 1.5 2
Number of Cores

0

5

10

15

20

25

30

C
al

l
S

et
up

D
el

ay
(S

ec
on

ds
)

0

10

20

30

40

F
ra

m
e

R
at

e

Call Setup Delay

Frame Rate

(c) Number of Cores

PF IN US OD PW
Governors

0

5

10

15

20

25

30

C
al

l
S

et
up

D
el

ay
(S

ec
on

ds
)

0

10

20

30

40

F
ra

m
e

R
at

e

Call Setup Delay

Frame Rate

(d) Governors

Figure 5: Impact of device parameters on video telephony (Skype)

38
4

48
6

59
4

70
2

81
0

91
8

10
26

11
34

12
42

13
50

14
58

15
12

Clock Frequency (Mhz)

10

20

30

40

50

N
et

w
or

k
T

hr
ou

gh
pu

t
(M

bp
s)

Figure 6: Impact of clock frequency on the network.

similar to video streaming. This discrepancy is due to two reasons:
first, unlike video streaming, there is no prefetching. Therefore,
packet processing in the kernel stack becomes a bottleneck. Second,
video telephony is interactive in that it requires both sending and
receiving live video. During this, it requires encoding, decoding,
muxing, and demuxing of the audio and video (recall that video
streaming has only decoding and demuxing). Although most of the
coding is offloaded, the post-processing is limited by poor CPUs.
Apart from the clock, Skype has similar trends as YouTube with
other parameters — memory, number of cores, and governors.

Interestingly, the Skype adaptive bitrate (ABR) algorithm is more
aggressive than YouTube. Skype’s ABR algorithm [30] changes the
call video quality for slow CPUs (as it does for poor network condi-
tions) when the software perceives poor throughput. In effect, the
client requests low-resolution videos under slower clock frequen-
cies.
Takeaway3: The key takeaway is that video telephony is linearly
affected by slower CPU speeds mainly because of the packet pro-
cessing overhead. This is different from video streaming, where the
effect of the network processing is masked by prefetching.

4 DISCUSSIONS
In this section, we discuss (a) the implications of clock frequency
on network throughput and (b) a possible Web page optimization
for low-end devices based on our results in §3.

4.1 Impact of Clock Frequency on Network
We find that clock frequency not only affects application processing
but also has a second-order effect on network throughput because of
slow packet processing, which in turn impacts application perfor-
mance. While packet processing overheads in the transport layer
are known to cause performance bottlenecks and have been investi-
gated in the data center context, including the use of kernel bypass

and specialized NIC-level processing (e.g., [22]), little attention has
been paid to this aspect in the context of mobile applications.

To demonstrate the impact, we conduct a study using the IPerf
tool [16] from a server that generates continuous traffic to the
Nexus4 smartphone. We measure the average throughput over 5
minutes and repeat the experiment 20 times for 12 clock frequencies.
Fig. 6 shows the effect of clock frequency on network throughput.
When the clock frequency is reduced from 1512 MHz to 384 MHz,
the average throughput drops from 48 Mbps to 32 Mbps. This de-
crease in throughput is entirely internal to the device. Recall (§2.1)
that we host the content on our LAN. The reason for the decreased
TCP throughput is that packet processing is computationally inten-
sive, and a slow CPU increases the packet processing time.

This second-order effect has significant implications, especially
for Web and Video telephony applications. As we discussed in §3,
these applications perform poorly under slow CPU speeds partly
because of the TCP processing delays.
Takeaway4: A takeaway is that we require research on improving
TCP processing, not only in the context of data centers but also in
the context of mobile applications.

4.2 Accelerating Web Page Load
Based on the lessons learned from video applications, we explore
how offloading computation to a coprocessor may improve the
performance of Web page loads under slower clocks. Many modern
mobile phones include GPUs, DSPs, and other specialized hardware
accelerators. We study the effect of offloading Web computations
to a DSP. To this end, we examine the computation performed
on the CPU during Web page loads and identify that Javascript
execution is a major time-consuming component. We then drill
down into the execution of the script functions for the slowest set
of Web pages in our study (news and sports pages) and find that a
significant fraction (20% of scripting time) of the page load time is
spent in regular expression evaluation (e.g., for URL matching and
list operations). This makes a case for exploring the possibility of
offloading regular expression evaluation to the DSP.

We conducted our analysis by offloading Javascript regular ex-
pression functions with the help of the Qualcomm Hexagon SDK
[27]. We converted the regular expression functions from Javascript
into direct C-language calls and ported the functions to the aDSP
processor of the Google Pixel 2 phone (which has the Snapdragon
835 Application processor). The communication between the CPU
and DSP was performed using FastRPC remote procedure calls.

We used Node.js to measure the runtime performance of the
offloaded functions and analyzed their impact on Web page load
times. To do this, we extracted the page dependency graphs with

IMC ’18, October 31-November 2, 2018, Boston, MA, USA M. Dasari et al.

CPU DSP
0.0

0.2

0.4

0.6

S
cr

ip
ti

ng
T

im
e

(S
ec

on
ds

)

0

1

2

3

4

5

eP
LT

(S
ec

on
ds

)

(a) Javascript execution (left axis) and emulated
page load times (right axis)

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Power (Watt)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

CPU

DSP

(b) CDF of power consumption during Javascript
execution

300 441 595 748 883
Clock Frequency (MHz)

0

2

4

6

8

10

12

14

eP
LT

CPU

DSP

(c) Emulated page load timeswith andwithout
DSP offloading at low clock frequencies

Figure 7: Evaluations for DSP offloading of Javascript functions

WProf [36], which preserves the dependency and computation
timing information of the entire Web page load process. We then
derived the emulated page load time (ePLT) by re-evaluating the
WProf dependency graphs after replacing the execution time of all
functions that contain the offloaded regular expressions with their
measured run times on the DSP.

Fig. 7 shows the impact of offloading regular expressions for
the top 20 sports Web pages. Offloading just these functions to the
DSP provides a noticeable improvement in the Web page load times
when the mobile device is run with the default frequency governors,
where the CPU frequency is set by the OS (Fig. 7a). Moreover, we
observe an even greater improvement—an almost 4× reduction—in
median power consumption (Fig. 7b). As expected, the page load
time improvements caused by offloading are largest (up to 25%)
when the Web page is loaded at slower CPU frequencies (Fig. 7c).

The potential improvement with this new approach depends on
the code patterns that are suitable for DSPs. Note that DSPs can
be inexpensive (≈$10 [13]), so adding them does not significantly
increase the cost of mobile devices. In fact, even current low-end
phones have many domain-specific hardware accelerators. Our
approach can be employed on either server side or client side in web
browsers if the browsers allow low-level code execution. However,
there is a trade-off. Allowing low-level code on the browser side
introduces security vulnerabilities. Situating the DSP optimization
on the server side may introduce larger binaries than the original
Javascript code, which may adversely affect page load time.
Takeaway5: Our results suggest that offloading the computation-
ally intensive parts of Web browsing to coprocessors has potential,
especially for low-end phones, and should be further explored.

5 RELATEDWORK
Web Performance: Extensive literature on characterizing and im-
proving Web performance exists. WProf [36] and WProf-M [23]
characterize the bottleneck of desktop and mobile browsing using
page-load dependencies. The key observation in these works is
that the network is the bottleneck in desktop browsing, whereas
computation is the bottleneck in mobile browsing. Polaris [25] and
Vroom [29] are designed to improve Web performance by prioritiz-
ing network object loads taking into account dependencies. Shan-
dian [37] and Prophecy [26] use a Web proxy to improve page-load
performance. Though these methods optimize network activities
to improve page loads, recent works including Webcore [40] and
GreenDroid [11] optimize the mobile hardware architecture to im-
prove PLT and minimize energy consumption. A preliminary anal-
ysis of the device hardware on Web browsing is shown in [8][20].

Video Performance: Similar to Web browsing, considerable work
has addressed improving video QoE focusing on network resource
provisioning [14, 39]. Pytheas [18] and CS2P [32] propose data-
driven approaches to study the impact of different parameters that
impact QoE. They show that the QoE can be largely improved
by adapting the bitrate using data-driven throughput prediction.
Huang et.al. [15] consider client playback buffer occupancy rate
adaptation, unlike network-only solutions [6, 17, 35].

Different from these works, our studies focus on understanding
the impact of device parameters on Web and video applications.

6 CONCLUSIONS AND FUTUREWORK
In this work, we analyze the impact of device hardware on key
mobile Internet applications – Web browsing (Google Chrome),
video streaming (YouTube), and video telephony (Skype). Our study
uses seven different smartphone devices with a range of capabilities
and widely different costs – from $60 to $800. We observe that Web
applications are adversely affected by low-end device hardware, but
video applications, especially streaming, are only modestly affected
by low-end hardware. This is largely because video applications
offload video decoding to a hardware accelerator and do not rely
on the CPU. The needed hardware accelerators are available even
on low-end phones. Video applications also parallelize their tasks
across multiple cores available in low-end phones, and they are
not significantly affected under slow clock speeds. Based on the
lessons learned from studying video QoE, we explore the usefulness
of offloading Web browsing tasks to a coprocessor. Our preliminary
analysis after offloading regular expression evaluations in Javascript
to a low-power DSP shows an improvement of 18% in Web page
load time along with a 4× reduction in energy consumption.

Our study highlights the impact of device-side performance on
mobile applications. While we have studied only hardware param-
eters, a comprehensive future study should also include software
parameters such as OS and browser versions and TCP and TLS
overheads in the network stack. Also, studying the joint impact of
network conditions and device-side parameters will be useful.

ACKNOWLEDGEMENTS
We thank our shepherd Narseo Vallina-Rodriguez and the reviewers
for their feedback, which greatly improved the presentation of this
paper. This work is partially supported by NSF grants CNS-1718014
and CNS-1566260, a grant from MSIT, Korea under the ICTCCP
Program, and a Google Research Award.

Impact of Device Performance on Mobile Internet QoE IMC ’18, October 31-November 2, 2018, Boston, MA, USA

REFERENCES
[1] Smartphone Stats 2017. [n. d.]. https://www.apple.com/iphone-xs/.
[2] ADB. [n. d.]. developer.android.com/tools/help/adb.html.
[3] YouTube Player API. [n. d.]. https://developers.google.com/youtube/android/.
[4] Http Archive. [n. d.]. https://httparchive.org/reports.
[5] Android View Cient (AVC). [n. d.]. github.com/dtmilano/AndroidViewClient.
[6] Athula Balachandran, Vyas Sekar, Aditya Akella, Srinivasan Seshan, Ion Stoica,

and Hui Zhang. 2013. Developing a predictive model of quality of experience
for internet video. In ACM SIGCOMM Computer Communication Review, Vol. 43.
ACM, 339–350.

[7] Jorge L Contreras and Rohini Lakshané. 2017. Patents and Mobile Devices in
India: An Empirical Survey. Vand. J. Transnat’l L. 50 (2017), 1.

[8] Mallesham Dasari, Conor Kelton, Javad Nejati, Aruna Balasubramanian, and
Samir R Das. 2017. Demystifying Hardware Bottlenecks in Mobile Web Quality
of Experience. In Proceedings of the SIGCOMM Posters and Demos. ACM, 43–45.

[9] MalleshamDasari, Shruti Sanadya, Christina Vlachou, Kyu-Han Kim, and Samir R.
Das. 2018. Scalable Ground-Truth Annotation for Video QoE Modeling in En-
terprise WiFi. In Quality of Service (IWQoS), 2018 IEEE/ACM 26th International
Symposium on. ACM/IEEE, 1–6.

[10] HBO Go. [n. d.]. https://play.hbogo.com/.
[11] Nathan Goulding-Hotta, Jack Sampson, Ganesh Venkatesh, Saturnino Garcia,

Joe Auricchio, Po-Chao Huang, Manish Arora, Siddhartha Nath, Vikram Bhatt,
Jonathan Babb, et al. 2011. The greendroid mobile application processor: An
architecture for silicon’s dark future. IEEE Micro 31, 2 (2011), 86–95.

[12] https://android.googlesource.com/kernel/common/+/android
4.4/Documentation/cpu-freq/governors.txt. [n. d.]. Android Governors.

[13] http://www.ti.com/processors/dsp/overview.html. [n. d.]. DSPs.
[14] Te-Yuan Huang, Nikhil Handigol, Brandon Heller, Nick McKeown, and Ramesh

Johari. 2012. Confused, timid, and unstable: picking a video streaming rate is
hard. In Proceedings of IMC. ACM, 225–238.

[15] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark
Watson. 2015. A buffer-based approach to rate adaptation: Evidence from a large
video streaming service. ACM SIGCOMM Computer Communication Review 44, 4
(2015), 187–198.

[16] IPerf. [n. d.]. https://iperf.fr/.
[17] Junchen Jiang, Rajdeep Das, Ganesh Ananthanarayanan, Philip A Chou, Venkata

Padmanabhan, Vyas Sekar, Esbjorn Dominique, Marcin Goliszewski, Dalibor
Kukoleca, Renat Vafin, et al. 2016. Via: Improving internet telephony call qual-
ity using predictive relay selection. In Proceedings of the 2016 ACM SIGCOMM
Conference. ACM, 286–299.

[18] Junchen Jiang, Shijie Sun, Vyas Sekar, and Hui Zhang. 2017. Pytheas: Enabling
Data-Driven Quality of Experience Optimization Using Group-Based Exploration-
Exploitation.. In NSDI, Vol. 1. 3.

[19] RAM Disks. Linux. [n. d.]. https://kerneltalks.com/linux/how-to-create-ram-disk-
in-linux/.

[20] Sumit Maheshwari, Dipankar Raychaudhuri, Ivan Seskar, and Francesco Bronzino.
2018. Scalability and Performance Evaluation of Edge Cloud Systems for Latency
Constrained Applications. In Proceedings of the Third ACM/IEEE Symposium on

Edge Computing. ACM/IEEE.
[21] Manycam. [n. d.]. https://manycam.com/.
[22] Akshay Narayan, Frank Cangialosi, Prateesh Goyal, Srinivas Narayana, Moham-

mad Alizadeh, and Hari Balakrishnan. 2017. The Case for Moving Congestion
Control Out of the Datapath. In Proceedings of Hotnets. ACM, 101–107.

[23] Javad Nejati and Aruna Balasubramanian. 2016. An in-depth study of mobile
browser performance. In Proc. WWW 2016. 1305–1315.

[24] Netflix. [n. d.]. https://www.netflix.com/.
[25] Ravi Netravali, Ameesh Goyal, James Mickens, and Hari Balakrishnan. 2016.

Polaris: Faster Page Loads Using Fine-grained Dependency Tracking.. In NSDI.
123–136.

[26] Ravi Netravali and James Mickens. 2018. Prophecy: Accelerating Mobile Page
Loads Using Final-stateWrite Logs. In 15th USENIXNSDI 18. USENIXAssociation.

[27] Qualcomm Development Network. [n. d.].
https://developer.qualcomm.com/software/hexagon-dsp-sdk/tools.

[28] Az Screen Recorder. [n. d.]. https://az-screen-
recorder.en.uptodown.com/android.

[29] Vaspol Ruamviboonsuk, Ravi Netravali, Muhammed Uluyol, and Harsha V Mad-
hyastha. 2017. Vroom: Accelerating the Mobile Web with Server-Aided Depen-
dency Resolution. In Proceedings of SIGCOMM. ACM, 390–403.

[30] Iraj Sodagar. 2011. The mpeg-dash standard for multimedia streaming over the
internet. IEEE MultiMedia 18, 4 (2011), 62–67.

[31] Moritz Steiner and Ruomei Gao. 2016. What slows you down? Your network or
your device? arXiv preprint arXiv:1603.02293 (2016).

[32] Yi Sun, Xiaoqi Yin, Junchen Jiang, Vyas Sekar, Fuyuan Lin, NanshuWang, Tao Liu,
and Bruno Sinopoli. 2016. Cs2p: Improving video bitrate selection and adaptation
with data-driven throughput prediction. In Proceedings of the 2016 conference on
ACM SIGCOMM 2016 Conference. ACM, 272–285.

[33] Tesseract. [n. d.]. https://www.pyimagesearch.com/2017/07/10/using-tesseract-
ocr-python/.

[34] Chrome Developer Tools. [n. d.]. https://chromedevtools.github.io/devtools-
protocol/.

[35] Naresh Vattikuti, Mallesham Dasari, Himanshu Sindhwal, and Bheemar-
juna Reddy Tamma. 2015. Towards bandwidth efficient TDMA frame struc-
ture for voice traffic in MANETs. In Electronics, Computing and Communication
Technologies (CONECCT), 2015 IEEE International Conference on. IEEE, 1–6.

[36] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy, and David
Wetherall. 2013. Demystifying Page Load Performance with WProf.. In NSDI.
473–485.

[37] Xiao Sophia Wang, Arvind Krishnamurthy, and David Wetherall. 2016. Speeding
up Web Page Loads with Shandian.. In NSDI. 109–122.

[38] Alexa Websites. [n. d.]. https://www.alexa.com/topsites.
[39] Fatima Zarinni, Ayon Chakraborty, Vyas Sekar, Samir R Das, and Phillipa Gill.

2014. A first look at performance in mobile virtual network operators. In Pro-
ceedings of IMC. ACM, 165–172.

[40] Yuhao Zhu and Vijay Janapa Reddi. 2017. Optimizing General-Purpose CPUs
for Energy-Efficient Mobile Web Computing. ACM Transactions on Computer
Systems (TOCS) 35, 1 (2017), 1.

	Abstract
	1 Introduction
	2 QoE across low & high-end devices
	2.1 Measurement Setup
	2.2 QoE Across Devices

	3 Impact of Device Parameters
	3.1 QoE of Web Browsing
	3.2 QoE of Video Streaming
	3.3 QoE of Video Telephony

	4 Discussions
	4.1 Impact of Clock Frequency on Network
	4.2 Accelerating Web Page Load

	5 Related Work
	6 Conclusions and Future Work
	References

