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360o Video Streaming

Immersive Experience

qCentral to many immersive applications (e.g., VR/AR)

$ Billion Market

Popularity of 360o Video is on the Rise! 

Image credit: Oculus

http://blog.dsky.co/tag/head-tracking/

http://blog.dsky.co/tag/head-tracking/
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Grand Challenge

q 360o videos require 8x bandwidth compared to 
regular videos for the same perceived quality
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Current Solutions

qViewport-adaptive 
streaming
• Divide video into tiles 

(e.g., 192x192 pixels)
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Flare [MobiCom’18], Rubiks [MobiSys’18], MOSAIC [IFIP Networking’19]
PANO [SIGCOMM’19], ClusTile [INFOCOM’19]



Current Solutions

qViewport-adaptive 
streaming
• Divide video into tiles 

(e.g., 192x192 pixels)
• Predict viewport tiles 

based on head 
tracking and video 
saliency analysis
• Stream only viewport 

specific tiles using 
ABR algorithm
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Flare [MobiCom’18], Rubiks [MobiSys’18], MOSAIC [IFIP Networking’19]
PANO [SIGCOMM’19], ClusTile [INFOCOM’19]



Limitations of Current Solutions
qViewport Prediction (VP)

• Predicting user head movement is 
hard

• Fetch more tiles to avoid the tile 
misses

• Fetching more tiles competes for 
bandwidth and reduces video 
quality 

qNetwork is the only resource for 
achieving good video quality 
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Can we improve client’s video quality 
without relying much on network?
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Opportunity1: Super-resolution

qUse low resolution image/video, hallucinate the details 
to produce high resolution

• Idea dates to the 90s 
• Currently benefiting from deep neural networks (DNNs) 
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https://amundtveit.com/2017/06/04/deep-learning-for-image-super-resolution-scale-up/

DNNs are computationally expensive

https://amundtveit.com/2017/06/04/deep-learning-for-image-super-resolution-scale-up/


Opportunity2: Computation

qSignificant 
improvement in GPU 
capacity over the 
decade
• Often underutilized

qLeverage this 
compute capacity on 
the client to do super-
resolution
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NAS [OSDI’2018]

Is this compute power enough to do 
super-resolution?



Super-resolution Challenges

9

q Large variance in 
quality enhancement

q Bulky DNN models
• Slower inference (e.g., 

less than 2FPS for a 1-
minute 4k video)

• Large model sizes
Model trained for one-minute video duration

How to make the models smaller, faster & better?



Lightweight Micro-models 
for Super-resolution
qTrain a model for each segment

qFetch the model along with segment download
qEnhance the quality of few viewport-specific tiles 

instead of whole frame
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Lightweight Micro-models 
for Super-resolution
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qBenefits
üSmall model footprint 
üFaster inference

q Additional challenges
• Still only few tile/sec 

inference rate

q Key Questions
• Which tiles to download 

and at what quality?
• Which tiles to generate 

(using super-resolution)?
• Which tiles to ignore?

Need a new ABR algorithm that combines 
compute and network resources



Neural-Aware ABR
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Video Server
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Neural-Aware ABR
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Maximize

How to Find a Solution Fast?
Greedy Algorithm



Putting Everything Together
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Implementation & Evaluation

• Linux server 
• Node.js

• Client
• Pixel3 phone

• Super-resolution model
• Keras with Tensorflow

backend

• Diverse network 
conditions
• Real traces: WiFi & 

4G/LTE
• FCC & Belgium traces

• 360o video dataset
• 10 videos
• MMSYS’17 head 

movement dataset
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Performance Comparison

• VP_Only [NOSSDAV’17]
• Download only 

viewport-specific tiles

• FLARE [MobiCom’18]
• Fetch additional tiles to 

accommodate VP 
inaccuracy

• NAS-regular [OSDI’18]
• A recent regular video  

streaming system using 
super-resolution

• NAS-360
• A modified version of 

NAS-regular for 360o

video
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Performance Comparison
Average Quality and Tile Misses
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30% improvement 
compared to Flare 

[MobiCom’18]

26% improvement at 
the 90th percentile 
compared to Flare 

[MobiCom’18]



Overall QoE Performance
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37% improvement compared to Flare 
[MobiCom’18]



Impact of Computation
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PARSEC performs better as we increase 
the computing power



Conclusion

• PARSEC
• A panoramic video streaming system
• DNN based super-resolution
• Neural-aware ABR algorithm

• PARSEC provides high QoE compared to the state-
of-the-art solutions
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https://www3.cs.stonybrook.edu/~mdasari/parsec
For more details please visit:

https://www3.cs.stonybrook.edu/~mdasari/parsec

