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Abstract— Point cloud video (PCV) offers watching experiences in photorealistic 3D scenes with six-degree-of-freedom (6-DoF),
enabling a variety of VR and AR applications. The user’s Field of View (FoV) is more fickle with 6-DoF movement than 3-DoF movement
in 360-degree video. PCV streaming is extremely bandwidth-intensive. However, current streaming systems require hundreds of Mbps
bandwidth, exceeding the bandwidth capabilities of commodity devices. To save bandwidth, FoV-adaptive streaming predicts a user’s
FoV and only downloads point cloud data falling in the predicted FoV. But it is difficult to accurately predict the user’s FoV even 2-3
seconds before playback due to 6-DoF. Misprediction of FoV or network bandwidth dips results in frequent stalls. To avoid rebuffering,
existing systems would cause incomplete FoV and degraded experience, deteriorating the user’s quality of experience (QoE).
In this paper, we describe Fumos, a novel system that preserves interactive experience by avoiding playback stalls while maintaining
high perceptual quality and high compression rate. We find a research gap in inter-frame redundant utilization and progressive
mechaism. Fumos has three crucial designs, including (1) Neural compression framework with inter-frame coding, namely N-PCC, which
achieves both bandwidth efficiency and high fidelity. (2) Progressive refinement streaming framework that enables continuous playback
by incrementally upgrading a fetched portion to a higher quality (3) System-level adaptation that employs Lyapunov optimization to
jointly optimize the long-term user QoE. Experimental results demonstrate that Fumos significantly outperforms Draco, achieving an
average decoding rate acceleration of over 260×. Moreover, the proposed compression framework N-PCC attains remarkable BD-Rate
gains, averaging 91.7% and 51.7% against the state-of-the-art point cloud compression methods G-PCC and V-PCC, respectively.

Index Terms—Streaming media, Point cloud compression, Deep learning, Virtual Reality (VR), User Experience

1 INTRODUCTION

The tremendous success of Internet video has led to a growing interest
in point cloud video (PCV), a sequence of point cloud frames, where
each frame is a set of unordered points sparsely distributed in the
3D space [1]. It provides six-degree-of-freedom (6-DoF) watching
experiences in photorealistic 3D scenes. With a head-mounted display
device, people can fully immerse themselves into a 3D video scene and
freely change their positions as well as rotate their heads to watch the
video content from any angle [2].

With such experience of full immersion and interactivity, PCV is
envisioned as a killer application of the next generation of videos in the
5G/6G era [3] in various domains including entertainment, education,
and e-commerce, and will empower various services such as VR, AR,
MR and Metaverse [4]. Recent surveys of marketers indicate that the
global VV market for industrial applications is expected to reach 22.5
billion USD by 2024 [5].

However, due to the higher dimensionality and the sparsity in nature,
PCV is generally more difficult to process compared to 2D video. Its
huge data volume significantly burdens its storage and transmission,
hindering its future development and application. Taking a common
30 frames per second video as an example, when the number of points
per frame is near 760,000, the bandwidth requirement for a VV is
up to 2.9 Gbps [3], greatly exceeding the common bandwidth capa-
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bilities of commodity devices. For instance, statistics show that the
standard broadband service in the U.S. is 25 Mbps [6], and Internet
broadband speeds in some countries are even less than 1 Mbps [7].
Thus, optimizing the bandwidth needed for PCV delivery is imperative.

Recent research has devised several strategies to alleviate band-
width consumption [8–11]. Among these approaches, two primary
categories of solutions have emerged: compression and field-of-view
(FoV)-adaptive streaming. However, during our year-scale operation of
PCV streaming systems, we found that they fall far short of practical
usage and continue to impose significant requirements. This is due
to the dynamic and heterogeneous interactions of the users with these
videos and the current inefficient compression scheme [12, 13].

FoV refers to the extent of the observable world in PCV. The FoV-
adaptive scheme has been effectively utilized to curtail bandwidth
consumption in 360-degree video streaming [14, 15]. As an extension,
contemporary PCV systems employ analogous methodologies, which
necessitates the spatial segmentation of each video chunk into 3D tiles.
Each tile can then be independently downloaded and decoded at varying
quality levels. FoV-adaptive schemes encompass the prediction of a
user’s FoV, which refers to the portion of the video visible to the user,
and subsequently, tailor the transmission based on this prediction. Tiles
within the predicted FoV are transmitted at a superior quality [10]. The
tiles outside the FoV are transmitted at a diminished quality, or in some
cases, not transmitted at all. They can significantly reduce bandwidth
consumption if they correctly predict the FoV. However, it is important
to note that they will stall playback if any tile within the actual FoV
is unavailable prior to the playback deadline. Therefore, the primacy
challenge of current point cloud streaming systems could be attributed
to the following two factors:
Frequent Stalls. The primary focus of most FoV-adaptive strategies
is to optimize the perceptual quality of the FoV and minimizing stalls.
Unfortunately, under 6-DoF, the accuracy in predicting a user’s FoV de-
grades significantly with prediction window (i.e., how much in advance
the prediction is made). The prediction accuracy can be as low as 0.06
for a window of 2 seconds (§3.3). In a small window, the prediction
model could accurately predict the FoV but makes the scheme vulnera-
ble to network bandwidth dips, potentially resulting in network-induced
stalls in video playback. For a long window, the user’s FoV could be
everywhere. Such large-scale FoV scope may result in motion-induced
stalls since not all tiles relevant to the user’s FoV could be fetched
before playback. Existing methods stall playback until all tiles relevant
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to a user arrive. In fact, state-of-the-art (SOTA) systems [8, 9] report
significant rebuffering.
Compression Inefficiency. Developing efficient compression tech-
niques for the underlying point cloud frames is essential to reducing the
video size and deploying the system at scale. Pioneer works leverage
the 3D data structure, e.g., the octree [13, 16, 17] or kd-tree [3, 18], to
directly compress the point cloud, or project the points onto 2D planes
followed by a traditional video codec, like H.264 or HEVC [19]. For
2D-based methods, the transformation between the 3D space and the
2D space substantially complicates the codec implementation, leading
to a lengthy encoding/decoding latency. For 3D-based methods, they
generally build a compact tree to geometrically represent the points of
a frame. Although they could encode and decode frames in real-time,
they only achieve a low compression ratio. Point clouds are sparsely
sampled within the 3D space, while 2D images are sampled on a dense
grid. Therefore, they are unable to identify and eliminate the inter-
frame redundancy. Existing time-frequency transforms are not directly
applicable to point clouds, which are major parts of the compression.
Fumos. Existing approaches stall playback until all tiles in the actual
FoV to a user arrive. This is especially undesirable in 3D settings, where
a user may move during the stall event, potentially changing the FoV
that is being fetched, resulting in further cascaded stalls. The existing
compression techniques still have drawbacks when being deployed in
practice. In this light, we propose Fumos, a practical PCV streaming
system designed to tackle the prevalent issues of excessive bandwidth
consumption and recurrent stalls in current systems. Fumos involves
the following innovations:
Neural Point Cloud Compression with Inter-frame Coding. The ma-
jor challenge of improving compression ratio is to eliminate inter-frame
redundancy [9]. For conventional 2D videos [20], motion estimation,
and motion compensation (ME/MC) are shown to be effective in ex-
ploiting temporal redundancy. However, the points in the neighboring
frames are not spatially aligned and their numbers are not even numeri-
cally aligned, making it not straightforward to migrate the techniques
in conventional 2D codecs to the 3D space. PCV needs to perform
block matching to achieve ME/MC across various frames, which leads
to memory and computational inefficiency. Moreover, point clouds are
usually not represented as voxel grids but octrees [16]. Such octrees
vary from frame to frame and it is difficult to find the correspondences
between octree nodes for motion compensation. Recent studies [21–24]
have showcased the remarkable compression rate achievable with static
point cloud compression. The inherent properties of neural networks
allow "free interpolation" when retrieving coordinates that do not coin-
cide with existing point clouds. Therefore, we propose N-PCC, a novel
neural compression framework that extends the current neural static
point cloud compression to neural point cloud video compression and
integrates ME/MC to further reduce the temporal redundancies.
Progressive Refining Streaming with Continuous Playback. The
network-induced stalls and motion-induced stalls are also pervasive
in current systems [25, 26]. Due to the varying network conditions,
they are hard to weigh or eliminate. To ensure continuous playback
without stalls, we could naively skip FoV tiles that do not arrive by the
playback deadline. However, this would result in incomplete FoVs with
blank areas and a sharp drop-off in user experience [8]. We observed
that although N-PCC could greatly compress the video, it inevitably
leads to extra decoding stalls and exclusively end-to-end transmission.
Specifically, N-PCC does not support FoV-adaptive streaming and its
decoding time exceeds the size of video chunk, which are prevalent
issues among other neural compression methods [21, 27, 28]. Thus, we
propose FoV-adaptive octree-based compression, which allows selec-
tive transmission based on the predicted FoV and fast decoding. Instead
of sequentially downloading PCV frames, we propose a progressive
refinement framework to gradually refine the spatial resolution of each
tile as its playback time approaches. At long prediction window, as
the prediction accuracy is very poor, we first prefetch the video frames
encoded by N-PCC and decode them. When the video is about to play
(short prediction window), the client requests the octree-encoded frames
within the predicted FoV to refine the perceptual quality into higher
densities. As they could run simultaneously, the client could down-

load the high-quality video at low bandwidth consumption. We further
adapt to varying network and compute conditions through Lyapunov
optimization [29] to optimize the long-term user QoE.

In summary, we propose the first inter-frame PCV compression
method and the first neural compression scheme for PCV streaming.
We, for the first time, enable PCV streaming with continuous playback.
We implement the above components and integrate them into Fumos,
a holistic PCV streaming system. Our extensive evaluations indicate
that Fumos can achieve line-rate, high-quality, bandwidth-efficient, and
adaptive PCV simultaneously. We highlight key findings from our
evaluations as follows:
• Fumos achieves an average decoding rate acceleration of over 260×

than Draco, the SOTA point cloud compression library.
• Fumos effectively optimizes the overall QoE amidst wildly fluctuat-

ing available bandwidth via adaptive bit rate optimization, achieving
a normalized QoE that is more than 87.5% higher than the baseline
methods.

• Fumos achieves a throughput of 1.49Mbps on the 8iVFB dataset,
marking a 92.8% and 51.3% reduction compared to Draco and G-
PCC, with a minor 20.9% and 9.6% decline in d1PSNR.

• N-PCC achieves an average 91.7% and 51.7% BD-Rate gains than
SOTA point cloud compression methods G-PCC and V-PCC.

2 RELATED WORK

2.1 Inter-frame Video Compression
PCV presents significant redundancy in streaming applications, where
frame differences are typically minimal [30]. ME/MC allows the stor-
age of only the motion vectors and alterations between frames [1], but
current PCV compression methods lack explicit ME/MC networks to
guide the inter-prediction. Many studies [31–33] utilize entropy encod-
ing that relies on the previous frame for compression. However, they
still ignore video dynamics and FoV dynamics. 3D motion compensa-
tion methods [34, 35] exploit the inter-frame redundancy. But they are
based on the intra-frame blocks rather than inter-frame chunks, which
can hardly detect the motions across the block boundaries. Although
V-PCC [36] could project PCV into 2D geometry and texture video
and use mature video codecs [19] for inter-frame compression, it only
works on small-scale PCVs and takes enormous time to transform 3D
into 2D.

2.2 Neural Point Cloud Compression
Neural point cloud compression methods have emerged, which are
roughly divided into point-based [21–23], voxel-based [37–39] and
octree-based [24, 40, 41]. Point-based methods utilize Farthest Point
Sampling (FPS) and KNN to obtain local clusters and point-wise mod-
ules like PointNet++ [42]. Voxel-based methods utilize 3D SparseCNN
based network [43] to compress the voxelized point cloud as an image.
Octree-based methods are octree entropy models that rely on spatial
correlation exploration via ancestor or sibling nodes for compression.
However, they are not specifically designed for PCV streaming, whose
utility is confined to static point clouds. As such, N-PCC extends the
current neural static point cloud compression to neural PCV compres-
sion and integrates ME/MC to reduce temporal redundancies of point
cloud sequences. As the first step, we focus on geometry compression.
Our proposed framework could be easily extended to color compression
using traditional methods [34, 44].

2.3 Point Cloud Video Streaming
Current PCV streaming systems mainly use similar methods to VR
video streaming systems [45,46] that divide the videos into smaller tiles
and only transmit the tiles inside the user’s FoV or adaptively adjust the
cell bitrate to optimize defined objective function [47,48]. For example,
ViVo [8] proposes three visibility-aware optimizations for video tiles to
save bandwidth consumption. Li et al. [49] consider the high compu-
tation complexity of point cloud video encoding during transmission
optimization. Furion [50] uses cloud-assisted VR streaming with sepa-
rated foreground and background. Yuzu [9] reduces the density of point
clouds and recovers them with super-resolution technology on client
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Figure 1: Octree-based Coding: How point cloud is indexed by octree.

devices. Overall, these systems compress and transmit each PtCl frame
independently, without consideration of the inter-frame redundancy.

3 BACKGROUND, MEASUREMENT AND MOTIVATION

In this section, we present the preliminary of our design on point
cloud compression, as detailed in § 3.1 and § 3.2. Moreover, our
measurements and motivations behind the design of our progressive
framework are expounded upon in § 3.3 and § 3.4.

3.1 Sparse Convolution
3D sparse convolution, akin to standard 3D dense convolution, effi-
ciently processes sparse tensors, utilizing valid MP-POVs to exploit
point clouds’ sparse characteristics. Various implementations exist,
such as Sparse 3D convolution [51], Sparse Blocks Network [52], 4D
Spatiotemporal ConvNets (Minkowski CNN) [43] and Torchsparse [53].
In this work, we represent 3D sparse convolution using the notation
(K3,C,S3)-SpConv, where K = k× k× k denotes the kernel size, C de-
notes the channel size, and S = s× s× s represents the stride. Similarly,
3D transpose convolution with analogous hyperparameters is denoted
as (K3,C,S3)-TSpConv.

3.2 Octree-based Point Cloud Compression
Octree [16] is an efficient and compact data structure utilized for in-
dexing points within 3D space. As shown in Fig. 1, the construction of
an octree entails a recursive subdivision of the 3D space into 2 × 2 × 2
subspaces until a pre-defined level-of-detail (LoD) is reached or there is
no point contained. The root node symbolizes the whole space and the
leaf nodes may contain any number of points. Notably, the intermediate
nodes have at most eight children to enable efficient storage within a
byte, where 1 indicates the corresponding subspace containing points
and 0 means an empty subspace. There is no necessity to persistently
store the coordinates of the points due to the approximation of the
points contained by the centers of the leaf nodes. This tree structure is
subsequently materialized into a byte stream following the breadth-first
search strategy.

3.3 Networking Challenges of Point Cloud Video
We compare PCV streaming with conventional video streaming in Ta-
ble. 1. The PCV supports a 6-DoF experience, which differs from
other video types in terms of data volume, latency tolerance, and pro-
cessing time. For instance, the standard broadband service in the U.S.
is 25 Mbps [6], but the PCV streaming requires extreme bandwidth
consumption (∼1 Gbps). Even with several strategies [9, 10, 54], the
medium-quality PCV is still high (∼100 Mbps [8]).

Table 1: Comparisons among four types of video streamings

Video Types 2D Video 360◦ Video VR Video Point Cloud Video
User Freedom N/A 2-DoF 3-DoF 6-DoF
Data Volume ∼1 Mbps ∼100 Mbps ∼100 Mbps ∼1 Gbps

Delay Sensitivity medium high high very high
Processing Time short medium high very high

These strategies, however, also engender issues. For example, FoV-
adaptive streaming should deal with motion and network stalls. Pre-
diction inaccuracy can trigger motion-induced stalls, which increase
sharply with prediction window. As shown in Fig. 2, median accuracy
is 93.1% for a window of 0.2 seconds and 29.6% for 3 seconds. Some
systems [3, 8] fetch tiles for each chunk at different qualities based
on predicted FoV. At long prediction window, inaccurate prediction
enhances the quality of the wrong set of tiles and leads to poor QoE. As
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shown in Fig. 3, some systems [10, 55] fetch tiles within the predicted
FoV. Due to user motion, they must fetch the missing tiles when the
video is about to play, leading to much lower quality that persists for
several frames or network-stalls. While they can prefetch the tiles
at short prediction window, the limited download time significantly
degrades the video quality.

3.4 Observation and Motivation of Neural Compression
For neural compression methods, decoding speed is the key bottleneck
for PCV streaming rather than bandwidth consumption. As such, none
of existing PCV systems adopt neural compression, thus burying its
significant compression rate. However, N-PCC integrates the ME/MC,
which separates the frames into keyframes and predicted frames. As
shown in Fig. 4, keyframe decoding is the most time-consuming. The
predicted frames, which are compressed based on differences relative to
adjacent frames, could be decoded quickly at low PCV quality. There-
fore, for each chunk encoded by N-PCC, we can finish the decoding
before playback by decoding a few seconds in advance (long prediction
window). Current octree-based methods can decode immediately, but
have a low compression rate and ignore the advantages of FoV. Obser-
vations in § 3.3 and the above motivate us to propose the progressive
refinement framework. As neural compression is not FoV-adaptive, the
client prefetches low-quality PCV encoded by N-PCC at long prediction
window. At short window, the client requests the remaining octree-
encoded PCV within the predicted FoV to refine the video quality,
which can be downloaded and decoded immediately due to accurate
prediction, without degrading the quality as Fig. 3. As keyframe de-
coding of each chunk doesn’t occur at the same time, the decoding of
each chunk could run simultaneously, the client could use N-PCC to
download most of the video data with a small amount of bandwidth
and achieve real-time decoding. As shown in Fig. 5, the decoding time
is proportional to the number of point clouds, thus Fumos can adjust
adaptively according to varying network/compute conditions.

4 SYSTEM OVERVIEW OF FUMOS

Based on the core idea proposed in § 3.4, we propose Fumos. Fig. 6
shows the system architecture of Fumos. A PCV is initially segmented
sequentially into video chunks, each containing multiple frames. Point
cloud (PtCl) within a chunk share the same hyperparameters for process-
ing. Each frame is downsampled via an octree, with a maximum depth
of LoD. Subsequently, a dynamic distribution mechanism apportions
a fraction γ of the PCV to the FoV-adaptive codec and the remainder
to N-PCC. N-PCC excels in compression and is employed to condense
full-scene PCV into compact data for transmission. Initially, it decodes
the prefetched, compactly compressed PtCl at the client end, forming
a coarse backbone. Subsequently, the FoV-adaptive codec decodes
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the short-term predicted region within the FoV to refine this region by
merging it with the coarse backbone, thereby enhancing the visual qual-
ity within FoV. This progressive refining process is illustrated in Fig. 7.
A Lyapunov optimization-based adapter, upon receiving the system
status Θt at time t, fine-tunes LoD and γ to optimize the overall QoE.
Broadly speaking, Fumos consists of the following two components:
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Figure 7: Progressive Refining Process

Neural Point Cloud Compression with Inter-frame Coding (§5).
This component utilizes the implicit dependency to encode frames on
the server side. An entropy-minimized motion compensation module is
designed to generate a reference frame by transforming the previous
frame to minimize conditional entropy. With the reference frame as
context, the inter-frame entropy encoding module encodes the current
frame, which enables reducing the video volume sharply.
Progressive Refining Streaming with Continuous Playback (§6).
This component adapts to dynamic FoVs by transmitting encoded tiles
with two encoding algorithms to ensure a complete and fluent display.
On the server side, the encoder selection module adaptively selects the
inter-frame entropy encoding module to encode the tiles.

5 N-PCC: NEURAL POINT CLOUD COMPRESSION

5.1 Overview of N-PCC
In this section, we elaborate on the proposed Neural PtCl Com-
pression (N-PCC). The detailed architecture of N-PCC is illustrated
in Fig. 8. Given two consecutive PtCl frames Pt = {Ct ,Ft} and
Pt−1 ={Ct−1,Ft−1}, where Ct ∈ R3 represent the coordinate matri-
ces and Ft ∈ R1 signifies the associated feature matrices with all-one
vectors indicating voxel occupancy. The network seeks to exploit the
motion estimation between Pt and the previously reconstructed frame
P̂t−1 to optimize bit rate consumption through inter-frame prediction.
Initially, a multi-scale feature extraction encoder is employed to capture
the density and topological information D through a series of down-
sampling blocks for current frame Pt and previously decoded frame
P̂t−1, deriving yt = {C3

t ,Dt} and ŷt−1 = {C3
t−1, D̂

3
t−1}, where C3

t repre-
sents the frame Ct post threefold downsampling. Futhermore, the ME
module analyzes the motion vectors Vt from {yt , ŷt−1} and MC module
adjusts Vt to ŷt−1 to deduce the predicted feature of the current frame

ỹt . The motion Vt and residual rt between ỹt and yt are compressed for
subsequent reconstruction P̂t .

5.2 Feature Extraction
When presented with two consecutive PCV frames {Pt−1,Pt}, the ob-
jective of the feature extraction module is to capture both the inherent
geometric properties and localized density information. Fig. 9 depicts
how encoder extracts these features.
Multi-Scale Feature Aggregation. The previous frame Pt−1 under-
goes a multi-scale encoding process to acquire multi-scale topological
information. The Multi-Scale Encoder (MS Encoder) consists of two
encoders and some SpConv layers. Each encoder is composed of
three Downsampling (DS) blocks. Initially, Pt−1 is subjected to se-
rial downsampling within the first encoder, yielding P1

t−1, P2
t−1, and

P3
t−1, denoting the progressively downsampled versions of Pt−1 after i

downsampling iterations. Subsequently, the second encoder integrates
these four multi-scale features and a series of SpConv layers futher
extracts the fused feature to generate D̂3

t−1, thereby deriving the pre-
dicted feature of previous frame ŷt−1 = {C3

t−1, D̂
3
t−1}. Meanwhile, a

single encoder generates the predicted feature of the current frame
yt = {C3

t ,Dt}.
Downsampling And Density Learning. Inspired by Wang et al. [38],
we adopt a (K3,C,23)-SpConv as a downsampler to reduce the spa-
tial redundancies of PtCls and learn hierarchical features from PtCls,
capturing the complex structures and patterns in 3D space. Afterward,
the remaining points aggregate the topological and density informa-
tion from the vanished points, which can be leveraged to aid the PtCl
reconstruction. To capture these features, we then introduce a Density-
Aware Unit. Let Pi and Pi+1 represent the Pre- and Post-downsampled
versions of the PtCl P, respectively, following the (K3,C,23)-SpConv
operation. These two sets, Pi and Pi+1, are subsequently processed by
a density-aware unit designed to extract density features. To elucidate
this process, we introduce the concept of a grouping point set denoted
as G(pn), where each point pn ∈ Pi+1 is a member of this set.

In the determination of the downsampled point set, each discarded
point is exclusively assigned to its nearest downsampled point. Con-
sequently, all points grouped with a particular downsampled point pn
collectively constitute a grouping points set G(pn). We denote the
density feature of point pn as Dn, which is calculated as follows:

Dn =
1

∥G(pn)∥ ∑
p j∈G(pn)

∥pn − p j∥2 (1)

While this strategy is effective in capturing density information, it
may lead to significant computational overhead. To mitigate this, we
employ a K-nearest neighbors (KNN) approach to select the k closest
neighbors of pn from within G(pn), denoted as pkn

n . Subsequently, the
density Dn is computed as follows:

Dn =
1
k

k

∑
j=1

∥pn − p j∥2, where p j ∈ pkn
n (2)



This modification reduces the computational burden while still ef-
fectively capturing density features for point Pn. Subsequently, this
computed density information is embedded into a latent space, produc-
ing density feature embedding. The density embedding FDn captures
the density of G(Pn) by mapping the Dn to a d-dimensional embedding
via Multilayer Perceptrons (MLPs).

FDn = MLP(Dn),FDn ∈ Rd (3)

5.3 Motion Estimation (ME)
Given the latent representation of previous frame and current frame, i.e.,
ŷt−1 = {C3

t−1, D̂
3
t−1} and yt = {C3

t ,D
3
t }, the ME module analyzes the

temporal and spatial correlation and predict the motion vector Vt . The
motion module first concatenate D3

t and D̂3
t−1 to get the concatenation

feature D̄3
t . Then, D̄3

t is passed through a (13,C3,13)-SpConv block
to generate motion vector Vt . Increasing the downsampling factor to
exploit the inherent sparsity of PtCls does widen the perceptual field,
but at the cost of significant information loss. In light of this, we
adopt the multi-scale motion aggregation (MSMA) strategy similar to
that described in § 5.2. The core idea behind MSMA is to capture
motion information at multiple scales, ensuring that both coarse and
fine motion patterns are effectively represented. This is achieved by
processing the feature representations through a series of SpConv layers
with varying kernel sizes, and subsequently fusing the outputs. This
method enhances motion embedding, serving as a key tool to strengthen
the connection between sparse PtCls across sequential frames. It helps
overcome the challenges of their natural variability and the information
loss caused by extensive downsampling. The MSMA module computes
the fused multi-scale motion flow Vt as:

Vt =Fv(ŷt−1 ⊕ y3
t ), (4)

where Fv represents the MSMA operation. Vt is subsequently com-
pressed through a deep entropy model (§ 5.5) for future reconstruction.

5.4 Motion Compensation (MC)
Motion Compensation utilizes motion vector Vt and the latent repre-
sentation of the previous frame ŷt−1 to predict the current frame’s
latent representation ỹt . In parallel to MSMA, a multi-scale reconstruc-
tion module amalgamates dimensionally-scaled, multi-solution motion
vectors to form a fused motion V̂t . Subsequently, for a point p with
estimated motion v, the new position p′ is derived as:

p′ = p+ v (5)

Given the non-uniform distribution of points, direct interpolation may
yield inaccuracies. To address this, we employ a weighted interpolation
algorithm for motion compensation, integrating a penalty coefficient
λ to selectively diminish the influence of distant neighbors during
interpolation. Hence, ỹt is formulated as:

ỹt =Fwi(V̂t , ŷt−1), (6)

where Fwi denotes the weighted interpolation function, generating
adaptive weights for a refined frame representation. The residual rt
is obtained by subtracting yt from ỹt , and is compressed using a deep
entropy model, as elaborated in the following § 5.5.

5.5 Deep Entropy Model
Ballé et al. [27] employed deep learning methodologies to gauge the
entropy of data targeted for compression. In the realm of information
theory, entropy quantifies the inherent uncertainty or randomness in a
dataset, acting as a constraint on the maximal average compression rate
attainable by any lossless compression algorithm applied to specific
data. Once the entropy is discerned, an Algorithmic Encoder (AE) and
Algorithmic Decoder (AD) proceed to compress and decompress the
data, adhering to the entropy values.

In our study, we implement the compression framework, where the
motion vector Vt and the residual rt undergo quantization are subse-
quently compressed utilizing a specialized deep entropy model, incor-
porating multiple MLPs. In contrast, the coordinate C3

t is subjected to
lossless compression via an octree-based encoder.
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for multi-scale density feature learning.

5.6 Point Cloud Reconstruction (Video Decoding)
Fig. 10 depicts the architecture of the decoder. It accepts a thrice-
downsampled PtCl tensor and strategically upsamples it to reconstruct
the original PtCl tensor, utilizing transpose convolution in the pro-
cess. Following each upscaling via (K3,C,23)-TSpConv, an Inception-
Residual Network (IRN) [57] block learns and aggregates local features,
while a pruning layer reconstructs the geometry. This pruning layer
works to eliminate incorrect voxels and to isolate the genuinely occu-
pied ones through binary classification. The symmetrical structure of
the decoder is crucial as it enables efficient reconstruction of the input,
mirroring the encoder’s architecture to ensure consistency and allow
for accurate retrievals.

5.7 Design of Loss Function
During the end-to-end training, we utilize the standard rate-distortion
loss function, represented as:

L = D+λR (7)

to achieve an optimal trade-off. Here, D acts as a penalty for distor-
tion, and R serves to penalize the bitrate. This approach ensures a
balanced compromise between maintaining fidelity and minimizing the
amount of data required for representation, contributing to the overall
effectiveness and efficiency of the model.
Rate Loss. Due to the discrete and conditional nature of entropy en-
coding, along with the quantization step which involves rounding off or
truncating values, a non-differentiability issue arises in the compression
process. Throughout the training phase, a differentiable surrogate is
employed [27, 28]. This surrogate replaces the quantization step with
additive uniform noise, leading to the approximation of the number of
bits through the rate loss, denoted as R.
Distortion loss. Distortion measures the fidelity of the reconstructed
data relative to the original data. It quantifies the loss of quality or the
errors introduced during compression and subsequent decompression.
We design two components to minimize the distortion of reconstruction:
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t .

Distortion loss: Optimization for Pruning. The pruner discussed
in §. 5.6 utilizes the occupation probability pv of each voxel v in the
decoded PtCl to decide whether to eliminate it. Therefore, we apply
binary cross entropy (BCE) loss to measure the distortion:

DBCE =
1
N ∑

v
−(Ov log pv +(1−Ov) log(1− pv)) (8)

where Ov is the ground truth that v is either occupied or unoccupied.
Distortion loss: Optimization for Density Learning. We introduce
a density term intended to advocate the recovery of local density. In
stage s of the decoder, a point p̂ is upsampled to a newly selected set of
points, denoted as Ĉ(p̂). Subsequently, its nearest counterpart, p, on
the encoder side is identified. This point, p, emerges from a set C(p).
The density values Dp and D p̂ can be inferred from C(p) and Ĉ(p̂)
respectively, abiding by the density calculation protocol delineated in
§. 5.2. We can articulate the density loss, Dden, as:

Dden =
S−1

∑
s=0

∑
p̂∈P̂s+1

|Dp −Dp̂|+ γ|Dp −Dp̂|
|P̂s+1|

(9)

In Equ. 9, the numerator’s first term computes the density disparity
between the two sets, while the second term evaluates the deviation
between the mean densities of all points in the sets relative to the
central points p or p̂. Here, γ functions as the weight regulating the
contribution of the mean density difference to the overall density loss.
Finally, the overall distortion loss is as follows:

D =DBCE +βDden (10)

where β is the weight of the density term.

6 FUMOS: PROGRESSIVE REFINING STREAMING

6.1 Pruning: Bitrate Adaptation via Level of Detail
The perceptual quality of a PCV is usually indicated by the peak signal-
to-noise ratio (PSNR) [58]. The enhancement in quality and volumetric
detail is concomitant with an escalation in bandwidth consumption.
Octree is a hierarchical structure where each level represents a different
LoD. Therefore, we propose that the LoD serves as a crucial parameter,
enabling the adaptive bitrate adaptation. By varying the maximum
permissible depth of the octree, we can orchestrate the video quality.
The higher level of the octree presents a more generalized and coarse
appearance. In contrast, the lower levels provide a more detailed and
precise appearance.

The current streaming systems [8, 10] directly alter the point cloud
density for bitrate adaptation. Our proposed LoD-based adaptation
could mitigate visual artifacts arising from density adjustments, en-
abling precise manipulation of the point cloud’s appearance while
maintaining its overall integrity. The system’s overarching objective
is to judiciously modulate the LoD in congruence with the prevailing
network conditions. This adaptive adjustment seeks to harmonize the
trade-off between the fidelity of the PCV and the associated bandwidth
consumption, thereby optimizing the overall QoE. Such a balanced ap-
proach is pivotal in scenarios where network resources are constrained,
and the efficient utilization of available bandwidth is paramount. We
elaborate the optimization process in the § 6.3.

6.2 FoV-adaptive Octree-based Compression

At short prediction window, Fumos achieves very accurate FoV pre-
diction (depicted in Fig. 2). We design a FoV-adaptive Octree-based
Codec, namely FoV-adaptive codec, to compress the tiles within the
predicted FoV through our octree-based codec. This region reduction
facilitatefs a much faster encoding, decoding and downloading com-
pared to standard codecs. Therefore, Fumos does not lead to cascaded
stalls or quality degradation like other systems. The detailed analysis
on efficiency improvement and visual quality enhancement are shown
in § 7.2. The details are shown below:
FoV Prediction. To predict future FoV, we design a model that lever-
ages historical FoV traces alongside the content of the current frame.
Utilizing an LSTM-based network, we capture features from N histori-
cal FoV traces to predict a coarse FoV region, denoted as S̃t . Following
this, an encoder consists of a series of SpConv layers with varying
kernels efficiently extract and fuse content features from the previous
N FoV regions {St−N−1,St−N , · · · ,St−1}, forming Ft−1. Then the en-
coder extracts the feature Ft from an expanded area around the initially
predicted region S̃t . Finally, a content-aware trace estimator, constituted
of a (13,C,13)-SpConv and an IRN network, analyzes the inter-frame
content feature to refine the coarse region S̃t to an accurate one Ŝt .
FoV Filtering. Upon acquiring an accurate predicted FoV region, a
FoV filter is deployed for downsampling, pruning points outside the
FoV. Given a point P(x,y,z) denoting the observer’s position in a 3D
coordinate space, a 3D unit vector G⃗ = (x1,y1,z1) representing the
gaze direction, a set of 3D points S = {P1,P2, ...,PN} denoting the PtCl,
and a FoV angle θ , the set of points within the FoV is determined by
computing the normalized vectors U⃗i =

Pi−P
||Pi−P|| from the observer’s

position to each point Pi in S, and subsequently comparing the cosine of
the angle αi between the gaze direction vector G⃗ and each normalized
vector U⃗i to the cosine of half of the FoV angle θ

2 . The resultant

set, {Pi ∈ S | cos(αi) ≥ cos
(

θ

2

)
}, encompasses all points within the

observer’s FoV.

6.3 Lyapunov Optimization for Video Streaming

In the realm of video streaming, optimizing the Quality of Experience
(QoE) is crucial. The challenge lies in ensuring high video quality and
low latency while adhering to computational constraints, especially in
volumetric video streaming scenarios.

6.3.1 Problem Formulation of QoE Maximization

The QoE is principally determined by two components: the percep-
tual quality of the video and delay. We assess perceptual quality by
determining the distortion error between the reconstructed PtCl and the
original PtCl. In a Video on Demand (VoD) scenario, latency is primar-
ily a result of data transmission and data decoding by the codec at the
client’s end. The latency incurred due to data transmission through the
network is considered a constant value, which is not incorporated into
the optimization process, hence, the latency under consideration is ex-
clusively the decoding time. Different pairs of (LoDt ,γt) yield different
compression ratios affecting reconstructed quality and latency. We eval-
uate the reconstructed quality and latency using function f (LoDt ,γt)
and g(LoDt ,γt) , respectively. The function f (LoDt ,γt) employs the
MPEG evaluation tool [59] to compute d1PSNR (point-to-point Peak
Signal-to-Noise Ratio) and d2PSNR (point-to-plane geometry Peak
Signal-to-Noise Ratio) between the original and reconstructed PtCl.
Subsequently, a comprehensive PSNR value is calculated consider-
ing a weighted combination of different specific PSNR values. More
explicitly, the formula is given by:

PSNR= d1PSNRglb+α1d2PSNRglb+α2(d1PSNRloc+α1d2PSNRloc)
(11)

Here, the subscript glb denotes the PSNR calculated over the entire
frame, and loc denotes the PSNR calculated on the parts in the Field of
View (FoV). The parameters α1 and α2 represent the significance of
d2PSNR and the perceptual visual quality in the FoV, respectively.



The function g(LoDt ,γt) represents the latency arising from the
codec’s data decoding on the client’s side. Following the data transmis-
sion and decoding scheme outlined in § 3.4, the latency can primarily
be ascribed to the decoding time necessitated by the FoV-adaptive
codec.

Finally, we combine f (·) and g(·) to formulate the QoE model:

QoE(t) = f (LoDt ,γt)−λg(LoDt ,γt) (12)

where λ is the important factor of latency.

6.3.2 Constraints on Resource
Given the dynamic nature of network conditions and the constraints of
computational resources, both the time-varying available bandwidth
and the available computational resource serve as crucial parameters
that play a pivotal role in our optimization problem.
Bandwidth Constraints. We denote Bt as the available bandwidth at
time t, and formulate current bandwidth consumption with function
h(LoDt ,γt) . Then we have

h(LoDt ,γt)≤ Bt (13)

Computational Resource Constraints. N-PCC, with higher compres-
sion rate, exhibits increased complexity compared to FoV-adaptive
codec. To balance decoding complexity and compression rate within
client-side computational resource limits, we monitor system status
to derive resource usage metrics, UCPU, UGPU, and UMem, assem-
bled into a vector U . A vector W assigns weight to each resource,
with Resource Consumption Score (RCS) computed as RCS =U ·W T .
The Computational Resource Requirement Ratio (CR) between N-PCC
and FoV-adaptive codec is obtained by CR = RCSN

RCSF
, representing

the RCS obtained by N-PCC and FoV-adaptive codec respectively.
Therefore, the computational consumption, C(LoDt ,γt), can be formu-
lated as follows:

C(LoDt ,γt)≜ v(LoDt)× (CRt × (1− γt)+ γt) (14)

Here, v(LoDt) signifies a proportional relationship concerning the data
volume of a PtCl encoded in an octree structure of depth LoDt , directly
influencing the resource usage metrics U . We treat the computational
resource on the client side as a constant value, denoted as C. To
simplify the problem, we only consider memory usage. Consequently,
the constraint can be expressed as:

C(LoDt ,γt)≤ C (15)

Objective. The system aims to optimize the overall QoE. Therefore,
by integrating the aforementioned constraints, the problem can be
formulated as:

Obj: max
LoDt ,γt

lim
T→∞

1
T

T−1

∑
t=0

[ f (LoDt ,γt)−λg(LoDt ,γt)] (16)

s.t. 0 ≤ γ ≤ 1 (17)

LoDt ∈ Z+ (18)
h(LoDt ,γt)≤ Bt (19)
C(LoDt ,γt)≤ C (20)

6.3.3 Lyapunov Optimization
This section illustrates the intricacies involved in the optimization of
QoE. Initially, Lyapunov optimization is employed to transmute the
extensive long-term optimization problem into a singular time slot
problem, which is subsequently resolved by evolutionary algorithms.
Problem Formulation. We commence by introducing a concatenated
vector, represented as the system state Θt :

Θt ≜ [ ft(·),gt(·),Bt ] (21)

Here, ft(·) symbolizes f (LoDt ,γt) and gt(·) represents g(LoDt ,γt).
Subsequently, the Lyapunov function is defined as:

L(Θt)≜
ft(·)2

2
+

gt(·)2

2
+

B2
t

2
(22)

Algorithm 1 Differential Evolution for Mixed-Integer Nonlinear

1: Input: Population size N, Scaling factor F , Crossover probability
CR, Maximum generations Gmax

2: Output: Optimal solution Xopt
3: Initialize population P with N individuals with random integer LoD

and random γ within bounds
4: Evaluate the objective function J for each individual in P
5: for g = 1 to Gmax do
6: for each target vector X in P do
7: Elect three distinct vectors Xr1, Xr2, Xr3 from P randomly
8: Mutate: V = Xr1 +F · (Xr2 −Xr3)
9: Ensure LoD component of V is an integer by rounding

10: Crossover: For each component i in V
11: if rand(0,1)<CR or i is a randomly chosen index then
12: Ui =Vi
13: else
14: Ui = Xi
15: end if
16: Ensure LoD component of U is an integer by rounding
17: Evaluate J(U) considering constraints
18: Selection: If J(U)< J(X), replace X with U in P
19: end for
20: Check for convergence and break if converged
21: end for
22: Return the individual in P with the lowest objective function value

as Xopt =0

We then introduce the concept of Lyapunov drift ∆(Θt), serving as a
measure for the anticipated elevation in the Lyapunov function across a
singular time slot:

∆(Θt) = E[L(Θt+1)−L(Θt)|Θt ] (23)

In the pursuit of optimizing the system’s performance whilst maintain-
ing stability, the decision pertaining to LoD and γ is made at each time
t to minimize the following expression:

J(LoDt ,γt)≜ ∆(Θt)+V ×E[QoE(t)|Θt ] (24)

Herein, V is a non-negative control parameter arbitrating a compromise
between system stability and the aspired performance metric. Finally,
integrating the constraints described in § 6.3.2, the optimization prob-
lem can be rewritten as:

Minimize J(LoDt ,γt) (25)
s.t. 0 ≤ γ ≤ 1 (26)

LoDt ∈ Z+ (27)
h(LoDt ,γt)≤ Bt (28)
C(LoDt ,γt)≤ C (29)

Evolutionary Algorithm Solver. The optimization problem is iden-
tified as a mixed-integer nonlinear problem due to integer constraints
and potential non-linearity of objective and constraint functions. This
non-convex problem, characterized by multiple local optima, often
arises from discrete variables like integer constraints. To tackle this, an
evolutionary algorithm solver is utilized for its ability to find superior
solutions by iteratively refining a set of potential solutions based on the
quality measure. The solution process is detailed in Algorithm 1. In
our experiment, we set N to 15, F to a range of [0.5, 1], and CR to 0.7.

7 EVALUATION

7.1 Experiment Settings
7.1.1 Dataset
Point cloud dataset For this experiment we use the 8i Voxelised Full
Body (8iVFB) Dataset [56] provided by MPEG for testing. The user
FoV trace is from [60], including the traces of users watching the



8iVFB dataset. It involves 26 participants viewed 150 looped frames of
PCV in the Unity engine, recording viewport location and orientation at
each frame. Fig. 11 illustrates the distribution of historical FoV traces,
elucidating user interest and engagement across varied content seg-
ments and spotlighting areas capturing predominant user attention. The
bandwidth trace is from NYU Mobile Bandwidth Trace [61], includes
4G bandwidth traces.

Longdress RedandblackSoldier Loot

Figure 11: Distribution of historical FoV traces from multiple users. The
more frequently the user views an area, the deeper the red color be-
comes; otherwise, the deeper the cyan color.

7.1.2 Training Strategy of N-PCC
The N-PCC is trained utilizing five distinct values of λ , ensuring the
encompassing of a broad spectrum of bit rates. An Adam optimizer [62],
characterized by β = (0.9,0.999), is employed in conjunction with a
learning rate scheduler that exhibits a decay rate of 0.8 post every 20
epochs. In the overall distortion loss (Equ. 10), β is set to 0.5, and
in the density loss (Equ. 9), γ is set to 1. The model is trained over
1000 epochs with an early stopping strategy. The batch size is set at 16
throughout the training process.

Training leverages the basketball sequences sourced from the
MPEG’s Owlii Dataset [63], while the 8iVFB sequences are utilized
for testing purposes. All the experimental undertakings are executed
on a server equiped with two 10-core Intel Xeon Silver 4210 CPUs,
128GB RAM, and an NVIDIA A100 GPU with 80GB of memory.

7.1.3 Parameter Setting
In Equ. 11, the parameters are set as follows: α1 = 1, α2 = 3, and λ

is set to 3000 in Equ. 12. The LoD is constrained within a range of
(5, 12), while γ is bounded within a range of (0.2, 0.6). The available
bandwidth for optimization is simulated through random generation,
determined by the dataset size, which is specified within a range of
0.75 to 1 times 5‰ of the size of 30 frames (assuming a frame rate of
30 FPS). The long prediction window is 3 seconds, the short window is
0.3 seconds.

7.1.4 Evaluation Metric
The codec performance is assessed by bit rate (bits per point, bpp) and
distortion, measured via d1PSNR and d2PSNR,in accordance with the
MPEG CTC standards. For a comprehensive evaluation of the stream-
ing system, the decoding rate is derived as the inverse of decoding time,
throughput is measured in Mbps, and QoE is derived from Equ. 12.

7.1.5 Baseline
Codec. To ascertain the performance superiority of N-PCC, we consider
three rule-based codecs: G-PCC, Draco, V-PCC, along with a learning-
based codec PCGCV2 as baseline methods.
System. Vivo, Groot, Vues are main PCV system used at present.
• G-PCC [64]: A standard point cloud compression method provided

by MPEG, used by Groot [55]. In lossy compression via trisoup
mode, it’s denoted as G-PCC (T).

• V-PCC [36]: A patch-based method provided by MPEG that lever-
ages existing video codecs for compressing the geometry and texture
information of a point cloud video, used by Vues [9].

• Draco [12]: A library for compressing and decompressing 3D geo-
metric meshes and PtCl provided by Google, used by ViVo [8]

• PCGV2 [38]: A state-of-the-art, sparse convolution based autoen-
coder for PtCl compression and reconstruction.

Streaming system. To evaluate the system performance, balancing
QoE against codec complexity, we devise three basic baseline methods
utilizing the codecs G-PCC, Draco, and N-PCC for PtCl compression
and decompression without employing bandwidth-aware optimization.

7.2 Performance Analysis
7.2.1 Overall Performance
Fig. 12, 13, 14, and 16 illustrate the trend of observations on the dataset
Longdress with a rolling average of window size equal to 10. The
x-axis represents time, with the unit being video trunk, and the size
of each video trunk is 10 frames. The result for each trunk is an
average of 10 frames within the trunk. It’s noteworthy that we choose
to showcase the visual results of Longdress over other datasets due to
its considerably larger Field of View (FoV) (refer to Fig. 11), which
results in higher bandwidth consumption and necessitates a superior
level of optimization for data transmission. The results obtained from
other datasets are reported in Table 2. These results demonstrate an
enhanced performance speed, while simultaneously preserving nearly
identical visual quality.
Observations for Bandwidth Aware Fine-tuning. In a resource-
constrained scenario requiring high compression, we simulate available
bandwidth Bt (see § 7.1.3) to assess our method. Fig. 12 shows band-
width fluctuations and Fig. 13 displays normalized average values
of LoD, γ , and QoE. Higher γ and LoD improve perceptual quality
(Fig. 15) but increase bandwidth use. The trend of these parameters mir-
rors bandwidth fluctuations, indicating that Fumos adaptively adjusts
them based on network conditions.
Observations for Effectiveness of Downsampling. Fig. 14 displays
the proportion of points remaining post-Octree and FoV filter downsam-
pling. Octree nearly halves the points, and FoV filter further excludes
regions outside the FoV, minimizing transmission data size. The up-
ward trend in FoV in indicative of a gradual shift in user focus towards
the upper part of the body over time, increasing the point volume
for transmission and decompression, which lowers the decoding rate
(Fig. 16), and thus, degrades QoE (Fig. 13).
Observations for Perceptual Quality. Fig. 15 depicts the PSNR trend,
showing a lower global (glb) PSNR compared to the local (loc) PSNR,
as anticipated. The glb PSNR evaluates distortion over the entire
frame, whereas loc PSNR targets the FoV region. Initially, N-PCC
reconstructs a base layer, which FoV-adaptive codec later refines,
yielding a higher loc PSNR than glb PSNR. This progressive refinement
is demonstrated in Fig. 7.
Comparison with Baseline. Fig. 17 highlights the superior QoE of
Fumos compared to baseline methods, with Table 2 detailing the per-
formance across metrics. Fumos surpasses baseline methods by more
than 87.5% in terms of QoE. Baseline methods’ low QoE stems from
their slow decoding, whereas Fumos, powered by N-PCC, efficient Oc-
tree downsampling, and accurate FoV prediction, boasts a much faster
decoding rate. However, in low-bandwidth settings, aggressive down-
sampling leads to significant information loss and poorer reconstruction
quality. In higher bandwidth scenarios, Fumos shows adaptability, im-
proving quality by about 15% in PSNR while maintaining reasonable
bandwidth consumption.

7.2.2 Performance of N-PCC
Effectiveness. The rate-distortion curves, derived from various meth-
ods tested on the Longdress dataset, are depicted in Fig. 18. These
curves illustrate that our proposed method, N-PCC, consistently sur-
passes other methods, attaining 91.7%, 99%, 51.7%, 99.9%, and 29.2%
BD-Rate (Bjontegaard Delta Rate) gains over G-PCC, G-PCC (T),
V-PCC, Draco, and PCGV2, respectively. Table 3 further reveals a
significant performance degradation from all perspectives without the
N-PCC. Moreover, excluding the density loss function (denoted as "Den.
Loss" in Table 3) from N-PCC training leads to performance degrada-
tion, evident from the d1psnr and d2psnr metrics, indicating its role in
improving reconstruction quality.
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Table 2: Performance Metrics of methods across datasets; values in
mean (std.) format, bolded if best. Fumos denotes our method in a
low-bandwidth scenario, while Fumos ∗ signifies 10× larger bandwidth
scenario (e.g., around 40 Mbps on Longdress).

Video Method throughout decode d1psnr d2psnr
(Mbps) ↓ (FPS) ↑ (loc)↑ (loc)↑

Longdress

G-PCC 2.90 (0.1) 0.28 (0.0) 70.02 (0.1) 74.21 (0.1)
Draco 19.79 (0.5) 8.94 (0.3) 77.23 (0.1) 82.00 (0.1)
N-PCC 1.29 (0.0) 3.85 (0.4) 75.97 (0.2) 78.02 (0.2)
Fumos 2.13 (0.9) 1004.03 (109) 62.14 (9.5) 68.25 (7.2)
Fumos∗ 2.53 (0.9) 582.23 (112) 70.12 (8.6) 77.21 (8.2)

Loot

G-PCC 2.65 (0.0) 0.29 (0.0) 67.41(0.1) 71.29(0.1)
Draco 18.77 (0.3) 9.31 (0.3) 77.20 (0.1) 81.95 (0.2)
N-PCC 1.21 (0.2) 3.82 (0.4) 70.64 (7.6) 72.58 (8.8)
Fumos 1.56 (0.6) 2227.63 (239) 60.50 (10.0) 71.12 (9.1)
Fumos∗ 2.43 (2.5) 728 (281) 69.23 (12.2) 82.12 (9.9)

Red&Black

G-PCC 2.78 (0.1) 0.31 (0.0) 67.92 (0.1) 71.23 (0.2)
Draco 18.09 (0.8) 10.00 (0.6) 77.44 (0.1) 82.22 (0.1)
N-PCC 1.88 (0.1) 3.71 (1.0) 72.07 (6.3) 75.32 (7.8)
Fumos 0.52 (0.7) 3122.06 (391) 61.02 (8.5) 71.65 (7.5)
Fumos∗ 1.70 (0.9) 1449 (358) 68.02 (9.8) 77.65 (8.2)

Soldier

G-PCC 3.90 (0.0) 0.22 (0.0) 65.82 (0.2) 70.10 (0.1)
Draco 26.20 (0.0) 6.44 (0.2) 77.07 (0.1) 81.90 (0.1)
N-PCC 1.98 (0.7) 2.27 (0.5) 71.56 (6.6) 74.67 (8.1)
Fumos 1.75 (0.5) 2928.13 (216) 61.59 (9.3) 71.97 (8.5)
Fumos∗ 3.36 (1.7) 1297 (220) 71.89 (5.8) 79.97 (8.9)

Efficiency. Table 2 indicates that N-PCC can decode at a rate over ten
times higher in FPS compared to G-PCC, albeit being two times slower
than Draco. These results pertain to each codec decoding an entire
frame. N-PCC only processes 1− γ of the frame in Fumos, implying a
potentially faster decoding rate than indicated above.

7.2.3 Ablation Study
Effectiveness of Lyapunov Optimization. We evaluate the system
performance without the Lyapunov optimization strategy by fixing
LoD and γ . Fig. 19 presents the normalized overall QoE value across
varying fixed hyperparameters, with the normalized max QoE value
obtained by our method normalized to 1. The findings suggest that
a static hyperparameter setting, unresponsive to network conditions,
diminishes the overall QoE.
Effectiveness of Components in the System. We evaluate each compo-
nent’s impact by excluding it and assessing the performance thereafter.
Table 3 reveals that utilizing the downsampler Octree or FoV filter leads
to a more than 7.4% and 1.6% decline in overall visual quality (local
PSNR), respectively. However, it significantly improves the decoding
rate by more than 40 and 20 times, respectively, implying the critical
importance of these components.

Table 3: Ablation on density learning, N-PCC, Octree and FoV filtering.

Ablation thourghout decode d1psnr d2psnr
(Mbps) ↓ (FPS) ↑ (loc) ↑ (loc)↑

Fumos 2.13 (2.9) 1004.03 (109) 67.27 (7.8) 69.20 (7.0)
W/O Den. Loss 2.32 (2.1) 1034.31 (127) 65.13 (7.4) 68.52 (6.8)
W/O N-PCC 10.43 (3.2) 24.12 (12.2) 61.09 (6.2) 67.26 (4.2)
W/O FoV 8.80 (2.3) 25.09 (8.3) 68.34 (7.2) 76.93 (8.9)
W/O Octree 6.43 (3.2) 54.62 (42.9) 72.47 (7.0) 77.06 (3.9)

7.2.4 Discussion on Continuous Playback

Existing systems stall playback until all tiles in the actual FoV arrive.
Our extensive evaluations indicate that N-PCC could greatly reduce
the bandwidth consumption and FoV-adaptive Codec could enable
instantaneous downloading and decoding at low prediction window.
The design of Fumos could greatly decimate the motion and network-
stalls, thereby enabling PCV streaming with continuous playback.

8 CONCLUSION REMARKS AND LIMITATION

This paper proposes Fumos, a novel system that preserves interactive ex-
perience by avoiding playback stalls while maintaining high perceptual
quality and high compression rate. Our system combines the benefits
of neural, FoV-adaptive, and octree-based compression, opening up a
promising direction for current point cloud video transmission and a
new avenue to co-design the application and transport layers for better-
quality point cloud video. Our progressive refining framework could
enable low bitrate streaming and greatly alleviate the frequent stalls,
but does not eliminate them entirely. The main limitation of Fumos
is the requirement for consumer GPUs or other similar accelerators
to run neural networks, which are increasingly accessible, powerful,
and commonly found in most devices. Otherwise, the decoding speed
would become the bottleneck.
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