EECES5512
Networked XR Systems

Last Class - Recap

* Homework?2
* Depth Map Compression

* Point Cloud Compression
* MPEG GPCC
* MPEG VPCC

Lecture Outline for Today

* Mesh Compression

Mesh

* A set of polygons, connected by
their common edges or vertices

* Typically represented by triangles

e Meshes are fundamental to

rendering scenes in video games,
animations, XR, and more.

4 4 ’/
SN RS
\ ’V\:\g\}" SeLH)
IS RIS
NN,

'\‘,'/47 ~
XN\ 2
=
N/

RN

Mesh

* Data representation
e Each frame has vertices and connectivity

* Color texture is stored independently, so there is also
mapping information from texture to polygons

Why Mesh Compression

e Challenges: Large meshes consume significant
memory and bandwidth, making storage and
transmission inefficient.

* Objectives: Compress meshes to reduce file size
without significantly losing quality, enabling faster
loading times and lower storage requirements.

* Benefits: Efficient mesh compression improves
performance in real-time applications and reduces
costs in data transmission and storage.

Mesh vs. Point Cloud

* Meshes are much more compact

Point cloud

O—"=r=
Mesh Point Cloud

Geometry Size (KB)
=
T

Triangle mesh

Counter Intuitive from the previous slide?

Mesh Compression

* Mesh Simplification — Vertex clustering or quadratic
error decimation

* Vertex Compression
* Connectivity Compression

* Texture Compression

Mesh Compression

Mesh simplification can be a form of compression

Capture Mesh Mesh Texture Mesh & Texture
RGB-D _Reconstruction Decimation | | Processing Encoding

Mesh Compression

* Vertex Compression

* Reduce the size of vertex coordinates while preserving the
mesh's geometric detail.

* Techniques

* Quantization: Converts floating-point coordinates to a fixed
number of bits, reducing precision but saving space.

* Predictive Coding: Encodes vertex positions as differences
from predicted positions based on previous vertices,
exploiting spatial coherence.

* Example: Using delta encoding, where each vertex
position is stored as the difference from the previous
vertex, significantly reducing the range of values.

Mesh Compression

* Vertex Compression
* Reduce the size of vertex coordinates while preserving
the mesh's geometric detail.
* Techniques:
* Vertices can be considered same as point cloud

e Can we use point cloud compression techniques that
we discussed in the previous lecture?

Mesh Compression

* Connectivity Compression

* Efficiently encoding the mesh topology, which defines
how vertices are connected to form faces.

* Techniques — Edgebreaker algorithm

* The algorithm traverses the mesh, encoding its topology
with a sequence of symbols representing the traversal
operations.

* Includes symbols like C (connect), L (left), R (right), E
(end), and S (start), which describes how to move from
one triangle to the next — CLERS String

Mesh Compression

For each new triangle encountered, Edgebreaker records its connectivity
relation with previously visited triangles using one of five symbols,
collectively called the CLERS code:

Symbol Meaning Description

C Create Introduces a new vertex (corner) not seen before.

L Left The left neighbor of the current triangle is already visited.
E End The triangle closes a region (no new neighbor).

R Right The right neighbor is already visited.

S Split A split occurs — multiple unvisited neighbors share a

vertex.

Mesh Compression

e Edgebreaker Algorithm

* The algorithm starts at an edge of the mesh and follows
the edges around the mesh in a systematic way,
essentially "breaking" the edges as it goes to avoid

retracing its path. This traversal forms a loop around the
mesh, visiting each triangle once.

Step 1: Start at the outer edge of A (S could denote this start,
but it's optional).

B Step 2: Move to triangle B via the shared edge — since B is
directly connected without requiring a turn, this move is
A encoded as "C" (Connect).

Step 3: From B, there's no new triangle to visit, so the algorithm
would end — this could be marked with "E" for End, but since
it's a simple case, the end might be implicit.

Mesh Compression

* Do this mesh as an
exercise — Edgebreaker
algorithm.

Mesh Compression

* Connectivity Compression

* Efficiently encoding the mesh topology, which defines
how vertices are connected to form faces.

* Techniques — Edgebreaker algorithm
* Achieves at most 4 bits per vertex
e Published in 1996 but popular even today

* Used in Google’s Draco Mesh compression code
(https://google.github.io/draco)

https://faculty.cc.gatech.edu/~jarek/papers/EdgeBreaker.pdf

https://google.github.io/draco/

Mesh Compression

* Connectivity Compression

* Efficiently encoding the mesh topology, which defines
how vertices are connected to form faces.

* Techniques — Edgebreaker algorithm

* Limitations: the algorithm assumes a manifold mesh,
which may limit its applicability to meshes with more
complex topologies without preprocessing

Definition of manifold mesh: if you were a tiny
ant walking on the surface of the 3D model,
you could walk all over the model without ever
finding a place where the surface doesn't make
sense i.e., no holes, no edges hanging in the
air, and no overlapping faces.

Mesh Compression

* Connectivity Compression

* Efficiently encoding the mesh topology, which defines
how vertices are connected to form faces.

* Techniques
* Edgebreaker — lossy for non-manifold meshes
* TFAN (Triangle fan) algorithm — lossless

* Valence-driven encoding — based on the number of
connected edges

Mesh Compression

e Texture compression
e How?

Mesh Compression

* Progressive compression

» Different levels of detail are created by simplifying the
original mesh step by step, usually by vertex decimation
or edge collapse techniques.

Mesh Compression

* Progressive compression

1.Edge Collapse: In the simplification process, an operation called

"edge collapse" is frequently used, where an edge between two

vertices is collapsed into a single vertex, reducing the overall count
of vertices and faces.

2.Vertex Split: The reverse of edge collapse is "vertex split." To refine
the mesh, the algorithm splits a vertex into two and recreates the
original edge and associated faces. The vertex split operation is
stored as a record of how to refine the mesh from one LOD to the

o

vsplit

Mesh Compression

 So far, we talked about only static meshes... What
about dynamic meshes?

* Animated meshes
e Sequence of mesh frames

Animated Mesh Compression

» Sparse Keyframes: Instead of storing every frame
of the animation, only keyframes are stored, and
intermediate frames are interpolated. This greatly
reduces the amount of data required.

* Interpolation: The in-between frames are
generated by interpolating the transformations
(such as position, rotation, and scaling) from
keyframes. Efficient algorithms ensure that this
interpolation does not require too much
computational power.

Compressing a mesh sequence

e Recall intra and inter frame prediction for exploiting
spatial and temporal redundancy in 2D videos
e Can we apply similar principles?

Compressing a mesh sequence

* Compress
displacements instead
of vertices

* Displacements are
much smaller values
and require fewer bits
compared to vertices

* Key assumption:
vertex correspondence

Previous frame Current frame

INTER-FRAME CODING FOR DYNAMIC MESHES VIA TEMPORALLY-CONSISTENT RE-MESHING, ICIP'23

Compressing a mesh sequence

* Compress

displacements instead
Of vertices Previous frame Current frame

* Displacements are
much smaller values
and require fewer bits
compared to vertices

* Key assumption:
vertex correspondence Final Step: Entropy Coding

INTER-FRAME CODING FOR DYNAMIC MESHES VIA TEMPORALLY-CONSISTENT RE-MESHING, ICIP'23

Compressing a mesh sequence

* Topology changes in practice (also called as time
varying mesh)

Frame 1 Frame 2

N
N

Compressing a mesh sequence

Motion estimation

AN
a N

Frame 1 Frame 2 Frame 2’

N
N

Topology matching with subdivision

Compressing a mesh sequence

* Extract key points from each mesh
e Establish correspondences
* Apply non-rigid transformation

Compressing a mesh sequence

* Challenges

* Not easy to get a useful reference mesh always — due to
self contact or addition or deletion of geometry across
time

e Still an active area of research — no open source or
very well adopted techniques yet

TVMC: Time-varying mesh

TVMC: MMSys 2025

compression

* Intrinsic Shape Signatures
ICP/optimization

Unstable & unreliable

Get correspondence
as reference mesh between meshes

e

TVMC: Time-varying mesh
compression

* Challenge2: Self contact issue

* Deforming mesh based on the

movement of selected keypoints
* Get the nearest K keypoints
» Update the vertex position based on
these K deformations

Visual distortion due
to self contact issue

TVMC: Time-varying mesh
compression

* Our insight 1: working on volume enclosed by the mesh surface can
create more stable and valuable inter-frame correspondence.

* Converted into a dense regular
square voxel grid

 Fast winding number in-and-out test Volume. IAVAVAUA
 Uniform distribution

* Linear extrapolation and e

TVMC: Time-varying mesh
compression

* Our insight 2: create a self-contact-free reference mesh based on a
group of consecutive frames that can be deformed to get
approximations of each mesh frame 1n the group.

| Referenc
L_€e.centers

-

I Volume-tracked
I Reference Mesh |

y

Deformation

Reference Mesh

Extraction Module Module

TVMC: Time-varying mesh

compression

* Baselines
* Google Draco, V-DMC

4.0 from MPEG,
KDDI’s work from Japan

e Dataset
« MPEG TVM Dataset, our
own custom dataset
e Metrics

e Quantitative: D2-PSNR,
RMSE, Coding time
e Qualitative evaluation

130

120

110

D2-PSNR (dB)
o)} ~ [e] [le] E
© © 6 o o

(8]
o

/"/t-*:=::"4‘
‘ﬁ/
TVMC, GoF =10

—e— Draco
+— KDDI
—— V-DMC 4.0

o

5

10 15 20
Bitrate (Mbps)

25

Small objects

TVMC Experiment results

130

120

._.
j
=]

* TVMC outperforms Draco, KDDI, V-DMC
4.0 with bitrates varying from 5 Mbps to 10
Mbps

[
o
o

80

D2-PSNR (dB)

70

60

50

* Reference mesh with displacements 0

* Increase the group of frame size to 10 (5
for KDDI)

* More inter-frame predicting compared with
V-DMC

130

120

[
[
o

=
o
o

D2-PSNR (dB)
8

~
=)

60

50

©
©

©
=)

.
»
L]
[]
L]
[
]
.
. k,_*47 —x—
LW :‘)
o TVMC, GoF = 10
p *— Draco
J +— KDDI
y +— V-DMC 4.0
10 15 20 25
Bitrate (Mbps)
“Dancer”
|
L]
»
L]
L]
(]
[]
.
A A -
i
¥ TVMC, GoF = 10
P +— Draco
p +«— KDDI
¢ V-DMC 4.0
5 15 20 25

10
Bitrate (Mbps)

“Mitch”

130
120 ’
L d
110 .
100 !
T ¥
o 90| .
%]
ﬁ 80 e =
O 0
o TVMC, GoF = 10
60 o +— Draco
¢ +— KDDI
50 +— V-DMC 4.0
0 20

10 15
Bitrate (Mbps)

“Basketball

29
130 player” .
120 .
L]
1101 4
m 100 ?
E "
%i 90/ .
s *
S 80)
o~ AW .
[m) ey p
70] L TVMC, GoF = 10
60 y +— Draco
y &+~ KDDI
50 +- V-DMC 4.0
0 5 10 15 20
Bitrate (Mbps)
(19 2
Thomas

25

25

TVMC Experiment results

TVMs TVMC Draco
D2-PSNR RMSE Encoder Decoder Portion D2-PSNR RMSE Encoder Decoder
. . Dancer 84.10 -3.63 13.38s 1520ms 93.08% 66.55 -2.76 181.70 ms 46.20 ms
o Vl Sual quallty Basketball player ~ 84.14 -2.65 21.12s 1460 ms 93.14% 66.01 -1.74 229.27ms 47.07 ms
. . Mitch 87.46 -3.78 10.65s 13.40ms 93.36% 66.99 -2.76 13933 ms 35.40 ms
e distortions on the parts of Thomas 8150 -3.54 10.88s 1260ms 93.52% 65.65 -275 137.93ms 35.60 ms

faces, hands, or feet

* Decoding time
* TVMC requires on average
13.95 ms, 66.1% reducing
compared to Draco.

Ao fm e

(a) Draco, "Dancer”, 6.13 Mbps (b) TVMC, "Dancer”, 6.12 Mbps (c) Draco, "Basketball”, 6.19 Mbps (d) TVMC, "Basketball”, 6.21 Mbps

tete il

(e) Draco, "Mitch", 5.20 Mbps (f) TVMC, "Mitch", 4.97 Mbps (g) Draco, "Thomas", 5.20 Mbps (h) TVMC, "Thomas", 5.09 Mbps

TVMC Experiment results

* Number of volume centers can affect TVMC’s performance
* Fine tune experiments may be required to get optimal results

(e) Visualization of 3000 centers (f) Result with 3000 centers (g) Visualization of 4000 centers (h) Result with 4000 centers

TVMC Experiment results

* TVMC can scale the GoF to 15 without obvious quality decrease
* GoF over 15 can cause distortions because of excessive motion changes

95;

m 90,
S
o 85
=
& 80
Q.

~N 75 —+— GOoF =5
. GoF = 10
—=— GoF =15

65"
0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0

Bitrate (Mbps)

Compressing a mesh sequence

* Small-scale vs. Large scale mesh sequences

* Large meshes often tend to be static most of the
regions
* Divide the mesh into patches

* Check if the patch is static, if so, don’t store, just store a
motion vector (note even in static cases topology can
change but since we “know” it’s a static region it’s okay
use the lossy reference)

* If not static, need to store
* Question: how to detect if it’s static or moving?

Small vs. Large Meshes

Large Mesh Compression

* |[dentify dynamic volume centers

Existing Methods & Limitations

Compression Type

Methods & Tools

Main Idea

Capabilities

Limitations

Static Mesh Compression

Draco (Google)

Edge-breaker

Single static mesh

Single-frame compression
Long decoding time
High bandwidth requirement
Ignores temporal redundancy

Dynamic Mesh
Compression

V-DMC (MPEG)

Base mesh + Displacement (Video
coding)

Dynamic meshes with
consistent topology
and connectivity
across frames

Cannot handle volumetricvideo or
meshes with varying topologies

VSMC (Apple)

Base mesh + Displacement (Video
coding)

Dynamic meshes or
some certain time-
varying meshes after
remeshing

Has constrains on mesh type,
unsuitable for volumetric video

Time-Varying Mesh
Compression

KDDI, 2024 ICASSP

Embedded Deformation, add
displacements when decoding

A small group of time-
varying meshes
(maximum 5)

Self-contact problem
Global distortion as every vertexis
deformed

UCSD, 2023 ICCVW

Embedded Deformation, use
deformation when decoding

A small group of time-
varying meshes
(maximum 5)

Self-contact problem

Global distortion as every vertexis
deformed

Long decoding time

Neural-Based Mesh
Compression

Google, 2018 ACM TOG

Truncated Signed Distance Function

Single static mesh

Computational costly

UCSD, 2024 SIGGRAPH

Represent the target surface using a
coarse set of quadrangular patches,
and add surface details using
coordinate neural networks by
displacing the patches (subdivision)

Single static mesh

Computational costly

Compressing mesh and texture
together

* We care about the final rendered image quality —
so we need to optimize a function that compresses
both mesh texture and mesh together

* Need to effectively allocate bits for mesh and texture

Compressing mesh and texture
together

* We care about the final rendered image quality —
so we need to optimize a function that compresses
both mesh texture and mesh together

* Need to effectively allocate bits for mesh and texture

Original texture 164MB
Original mesh

Original texture

8.2MB
Low-res mesh

Low-res texture 8. 2MB
Original mesh

Mesh Compression

* This lecture has focused mainly on compression
efficiency

e Almost all of the algorithms are computationally very
expensive

* None of the dynamic or time varying methods can run in

real-time — so only suitable for offline stored
applications

Summary of the Lecture

* Mesh compression
* Vertex, connectivity, texture compression
* Static
* Dynamic or time varying
* Progressive

Next up: multi-view compression

	Slide 1: EECE5512 Networked XR Systems
	Slide 2: Last Class - Recap
	Slide 3: Lecture Outline for Today
	Slide 4: Mesh
	Slide 5: Mesh
	Slide 6: Why Mesh Compression
	Slide 7: Mesh vs. Point Cloud
	Slide 8: Mesh Compression
	Slide 9: Mesh Compression
	Slide 10: Mesh Compression
	Slide 11: Mesh Compression
	Slide 12: Mesh Compression
	Slide 13: Mesh Compression
	Slide 14: Mesh Compression
	Slide 15: Mesh Compression
	Slide 16: Mesh Compression
	Slide 17: Mesh Compression
	Slide 18: Mesh Compression
	Slide 19: Mesh Compression
	Slide 20: Mesh Compression
	Slide 21: Mesh Compression
	Slide 22: Mesh Compression
	Slide 23: Animated Mesh Compression
	Slide 24: Compressing a mesh sequence
	Slide 25: Compressing a mesh sequence
	Slide 26: Compressing a mesh sequence
	Slide 27: Compressing a mesh sequence
	Slide 28: Compressing a mesh sequence
	Slide 29: Compressing a mesh sequence
	Slide 30: Compressing a mesh sequence
	Slide 31: TVMC: Time-varying mesh compression
	Slide 32: TVMC: Time-varying mesh compression
	Slide 33: TVMC: Time-varying mesh compression
	Slide 34: TVMC: Time-varying mesh compression
	Slide 35: TVMC: Time-varying mesh compression
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Compressing a mesh sequence
	Slide 41: Small vs. Large Meshes
	Slide 42: Large Mesh Compression
	Slide 43
	Slide 44: Compressing mesh and texture together
	Slide 45: Compressing mesh and texture together
	Slide 46: Mesh Compression
	Slide 47: Summary of the Lecture

