
EECE5512
Networked XR Systems

Last Class - Recap

• Homework2

• Depth Map Compression

• Point Cloud Compression
• MPEG GPCC

• MPEG VPCC

Lecture Outline for Today

• Mesh Compression

Mesh

• A set of polygons, connected by
their common edges or vertices

• Typically represented by triangles

• Meshes are fundamental to
rendering scenes in video games,
animations, XR, and more.

Mesh

• Data representation
• Each frame has vertices and connectivity

• Color texture is stored independently, so there is also
mapping information from texture to polygons

Why Mesh Compression

• Challenges: Large meshes consume significant
memory and bandwidth, making storage and
transmission inefficient.

• Objectives: Compress meshes to reduce file size
without significantly losing quality, enabling faster
loading times and lower storage requirements.

• Benefits: Efficient mesh compression improves
performance in real-time applications and reduces
costs in data transmission and storage.

Mesh vs. Point Cloud

• Meshes are much more compact

Point cloud

Triangle mesh

Counter Intuitive from the previous slide?

Mesh Compression

• Mesh Simplification – Vertex clustering or quadratic
error decimation

• Vertex Compression

• Connectivity Compression

• Texture Compression

Mesh Compression
Mesh simplification can be a form of compression

Mesh Compression

• Vertex Compression
• Reduce the size of vertex coordinates while preserving the

mesh's geometric detail.

• Techniques
• Quantization: Converts floating-point coordinates to a fixed

number of bits, reducing precision but saving space.
• Predictive Coding: Encodes vertex positions as differences

from predicted positions based on previous vertices,
exploiting spatial coherence.

• Example: Using delta encoding, where each vertex
position is stored as the difference from the previous
vertex, significantly reducing the range of values.

Mesh Compression

• Vertex Compression
• Reduce the size of vertex coordinates while preserving

the mesh's geometric detail.

• Techniques:
• Vertices can be considered same as point cloud

• Can we use point cloud compression techniques that
we discussed in the previous lecture?

Mesh Compression

• Connectivity Compression
• Efficiently encoding the mesh topology, which defines

how vertices are connected to form faces.

• Techniques – Edgebreaker algorithm
• The algorithm traverses the mesh, encoding its topology

with a sequence of symbols representing the traversal
operations.

• Includes symbols like C (connect), L (left), R (right), E
(end), and S (start), which describes how to move from
one triangle to the next – CLERS String

Mesh Compression
For each new triangle encountered, Edgebreaker records its connectivity
relation with previously visited triangles using one of five symbols,
collectively called the CLERS code:

Mesh Compression

• Edgebreaker Algorithm
• The algorithm starts at an edge of the mesh and follows

the edges around the mesh in a systematic way,
essentially "breaking" the edges as it goes to avoid
retracing its path. This traversal forms a loop around the
mesh, visiting each triangle once.

A

B

Step 1: Start at the outer edge of A (S could denote this start,
but it's optional).
Step 2: Move to triangle B via the shared edge — since B is
directly connected without requiring a turn, this move is
encoded as "C" (Connect).
Step 3: From B, there's no new triangle to visit, so the algorithm
would end — this could be marked with "E" for End, but since
it's a simple case, the end might be implicit.

Mesh Compression

• Do this mesh as an
exercise – Edgebreaker
algorithm.

Mesh Compression

• Connectivity Compression
• Efficiently encoding the mesh topology, which defines

how vertices are connected to form faces.

• Techniques – Edgebreaker algorithm
• Achieves at most 4 bits per vertex

• Published in 1996 but popular even today

• Used in Google’s Draco Mesh compression code
(https://google.github.io/draco)

https://faculty.cc.gatech.edu/~jarek/papers/EdgeBreaker.pdf

https://google.github.io/draco/

Mesh Compression

• Connectivity Compression
• Efficiently encoding the mesh topology, which defines

how vertices are connected to form faces.

• Techniques – Edgebreaker algorithm
• Limitations: the algorithm assumes a manifold mesh,

which may limit its applicability to meshes with more
complex topologies without preprocessing

Definition of manifold mesh: if you were a tiny
ant walking on the surface of the 3D model,
you could walk all over the model without ever
finding a place where the surface doesn't make
sense i.e., no holes, no edges hanging in the
air, and no overlapping faces.

Mesh Compression

• Connectivity Compression
• Efficiently encoding the mesh topology, which defines

how vertices are connected to form faces.

• Techniques
• Edgebreaker – lossy for non-manifold meshes

• TFAN (Triangle fan) algorithm – lossless

• Valence-driven encoding – based on the number of
connected edges

Mesh Compression

• Texture compression
• How?

Mesh Compression

• Progressive compression
• Different levels of detail are created by simplifying the

original mesh step by step, usually by vertex decimation
or edge collapse techniques.

Mesh Compression

• Progressive compression
1.Edge Collapse: In the simplification process, an operation called

"edge collapse" is frequently used, where an edge between two
vertices is collapsed into a single vertex, reducing the overall count
of vertices and faces.

2.Vertex Split: The reverse of edge collapse is "vertex split." To refine
the mesh, the algorithm splits a vertex into two and recreates the
original edge and associated faces. The vertex split operation is
stored as a record of how to refine the mesh from one LOD to the
next.

Mesh Compression

• So far, we talked about only static meshes... What
about dynamic meshes?

• Animated meshes

• Sequence of mesh frames

Animated Mesh Compression

• Sparse Keyframes: Instead of storing every frame
of the animation, only keyframes are stored, and
intermediate frames are interpolated. This greatly
reduces the amount of data required.

• Interpolation: The in-between frames are
generated by interpolating the transformations
(such as position, rotation, and scaling) from
keyframes. Efficient algorithms ensure that this
interpolation does not require too much
computational power.

Compressing a mesh sequence

• Recall intra and inter frame prediction for exploiting
spatial and temporal redundancy in 2D videos
• Can we apply similar principles?

Compressing a mesh sequence

• Compress
displacements instead
of vertices
• Displacements are

much smaller values
and require fewer bits
compared to vertices

• Key assumption:
vertex correspondence

INTER-FRAME CODING FOR DYNAMIC MESHES VIA TEMPORALLY-CONSISTENT RE-MESHING, ICIP’23

Previous frame Current frame

Compressing a mesh sequence

• Compress
displacements instead
of vertices
• Displacements are

much smaller values
and require fewer bits
compared to vertices

• Key assumption:
vertex correspondence

INTER-FRAME CODING FOR DYNAMIC MESHES VIA TEMPORALLY-CONSISTENT RE-MESHING, ICIP’23

Final Step: Entropy Coding

Previous frame Current frame

Compressing a mesh sequence

• Topology changes in practice (also called as time
varying mesh)

Frame 1 Frame 2

Compressing a mesh sequence

Topology matching with subdivision

Frame 1 Frame 2 Frame 2’

Motion estimation

Compressing a mesh sequence

• Extract key points from each mesh

• Establish correspondences

• Apply non-rigid transformation

Open3D

Compressing a mesh sequence

• Challenges
• Not easy to get a useful reference mesh always – due to

self contact or addition or deletion of geometry across
time

• Still an active area of research – no open source or
very well adopted techniques yet

TVMC: Time-varying mesh
compression

• Challenge1: Temporal correspondence

Choose one of them
as reference mesh

Input TVMs

• Intrinsic Shape Signatures

• ICP/optimization

Get correspondence
between meshes

Unstable & unreliable

TVMC: MMSys 2025

TVMC: Time-varying mesh
compression
• Challenge2: Self contact issue

• Deforming mesh based on the

movement of selected keypoints
• Get the nearest K keypoints

• Update the vertex position based on

these K deformations Visual distortion due

to self contact issue

TVMC: Time-varying mesh
compression
• Our insight 1: working on volume enclosed by the mesh surface can

create more stable and valuable inter-frame correspondence.

• Converted into a dense regular

square voxel grid

• Fast winding number in-and-out test

• Uniform distribution

• Linear extrapolation and

optimization

Volume-
tracking

Global
Optimization

TVMC: Time-varying mesh
compression
• Our insight 2: create a self-contact-free reference mesh based on a

group of consecutive frames that can be deformed to get
approximations of each mesh frame in the group.

Volume-tracked
Reference Mesh

Deformation
Module

Reference Mesh
Extraction Module

MDS

Referenc
e centers

TVMC: Time-varying mesh
compression

• Baselines

• Google Draco, V-DMC

4.0 from MPEG,
KDDI’s work from Japan

• Dataset

• MPEG TVM Dataset, our
own custom dataset

• Metrics

• Quantitative: D2-PSNR,
RMSE, Coding time

• Qualitative evaluation

Small objects

TVMC Experiment results

“Dancer” “Basketball

player”

“Mitch” “Thomas”

• TVMC outperforms Draco, KDDI, V-DMC

4.0 with bitrates varying from 5 Mbps to 10

Mbps

• Reference mesh with displacements

• Increase the group of frame size to 10 (5

for KDDI)

• More inter-frame predicting compared with

V-DMC

TVMC Experiment results

• Visual quality
• distortions on the parts of

faces, hands, or feet

• Decoding time
• TVMC requires on average

13.95 ms, 66.1% reducing

compared to Draco.

TVMC Experiment results

• Number of volume centers can affect TVMC’s performance
• Fine tune experiments may be required to get optimal results

TVMC Experiment results

• TVMC can scale the GoF to 15 without obvious quality decrease
• GoF over 15 can cause distortions because of excessive motion changes

Compressing a mesh sequence

• Small-scale vs. Large scale mesh sequences

• Large meshes often tend to be static most of the
regions
• Divide the mesh into patches

• Check if the patch is static, if so, don’t store, just store a
motion vector (note even in static cases topology can
change but since we “know” it’s a static region it’s okay
use the lossy reference)

• If not static, need to store

• Question: how to detect if it’s static or moving?

Small vs. Large Meshes

Large Mesh Compression

• Identify dynamic volume centers

Existing Methods & Limitations
Compression Type Methods & Tools Main Idea Capabilities Limitations

Static Mesh Compression Draco (Google) Edge-breaker Single static mesh

Single-frame compression
Long decoding time

High bandwidth requirement
Ignores temporal redundancy

Dynamic Mesh
Compression

V-DMC (MPEG)
Base mesh + Displacement (Video

coding)

Dynamic meshes with
consistent topology

and connectivity
across frames

Cannot handle volumetric video or
meshes with varying topologies

VSMC (Apple)
Base mesh + Displacement (Video

coding)

Dynamic meshes or
some certain time-

varying meshes after
remeshing

Has constrains on mesh type,
unsuitable for volumetric video

Time-Varying Mesh
Compression

KDDI, 2024 ICASSP
Embedded Deformation, add

displacements when decoding

A small group of time-
varying meshes
(maximum 5)

Self-contact problem
Global distortion as every vertex is

deformed

UCSD, 2023 ICCVW
Embedded Deformation, use
deformation when decoding

A small group of time-
varying meshes
(maximum 5)

Self-contact problem
Global distortion as every vertex is

deformed
Long decoding time

Neural-Based Mesh
Compression

Google, 2018 ACM TOG Truncated Signed Distance Function Single static mesh
Computational costly

…

UCSD, 2024 SIGGRAPH

Represent the target surface using a
coarse set of quadrangular patches,

and add surface details using
coordinate neural networks by

displacing the patches (subdivision)

Single static mesh
Computational costly

…

Compressing mesh and texture
together
• We care about the final rendered image quality –

so we need to optimize a function that compresses
both mesh texture and mesh together
• Need to effectively allocate bits for mesh and texture

Compressing mesh and texture
together
• We care about the final rendered image quality –

so we need to optimize a function that compresses
both mesh texture and mesh together
• Need to effectively allocate bits for mesh and texture

Original texture
Original mesh

Original texture
Low-res mesh

Low-res texture
Original mesh

164MB

8.2MB

8.2MB

Mesh Compression

• This lecture has focused mainly on compression
efficiency
• Almost all of the algorithms are computationally very

expensive

• None of the dynamic or time varying methods can run in
real-time – so only suitable for offline stored
applications

Summary of the Lecture

• Mesh compression
• Vertex, connectivity, texture compression

• Static

• Dynamic or time varying

• Progressive

Next up: multi-view compression

	Slide 1: EECE5512 Networked XR Systems
	Slide 2: Last Class - Recap
	Slide 3: Lecture Outline for Today
	Slide 4: Mesh
	Slide 5: Mesh
	Slide 6: Why Mesh Compression
	Slide 7: Mesh vs. Point Cloud
	Slide 8: Mesh Compression
	Slide 9: Mesh Compression
	Slide 10: Mesh Compression
	Slide 11: Mesh Compression
	Slide 12: Mesh Compression
	Slide 13: Mesh Compression
	Slide 14: Mesh Compression
	Slide 15: Mesh Compression
	Slide 16: Mesh Compression
	Slide 17: Mesh Compression
	Slide 18: Mesh Compression
	Slide 19: Mesh Compression
	Slide 20: Mesh Compression
	Slide 21: Mesh Compression
	Slide 22: Mesh Compression
	Slide 23: Animated Mesh Compression
	Slide 24: Compressing a mesh sequence
	Slide 25: Compressing a mesh sequence
	Slide 26: Compressing a mesh sequence
	Slide 27: Compressing a mesh sequence
	Slide 28: Compressing a mesh sequence
	Slide 29: Compressing a mesh sequence
	Slide 30: Compressing a mesh sequence
	Slide 31: TVMC: Time-varying mesh compression
	Slide 32: TVMC: Time-varying mesh compression
	Slide 33: TVMC: Time-varying mesh compression
	Slide 34: TVMC: Time-varying mesh compression
	Slide 35: TVMC: Time-varying mesh compression
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Compressing a mesh sequence
	Slide 41: Small vs. Large Meshes
	Slide 42: Large Mesh Compression
	Slide 43
	Slide 44: Compressing mesh and texture together
	Slide 45: Compressing mesh and texture together
	Slide 46: Mesh Compression
	Slide 47: Summary of the Lecture

