EECES5512
Networked XR Systems



Last Class - Recap

* Mesh Compression
 Static meshes
* Dynamic topology matching meshes
* Time-varying meshes with varying topology



Lecture Outline for Today

* Quiz

 Limitations of traditional Compression

* Machine Learning based Compression
* Video

e Point cloud
e Mesh



Traditional Compression
Algorithms

* Video Compression
* H.26x series
* VP series

* Point cloud compression
* MPEG GPCC, VPCC

* Mesh compression

* Vertex and connectivity compression methods (e.g.,
Edgebreaker or TFAN), TVMC



Limitations of Traditional
Compression Algorithms

* Reaching a saturation point in compression ratio
* E.g., 2D video codecs have been engineered for decades

VVC - Coding Efficiency

Target for the final VVC standard
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Limitations of Traditional
Compression Algorithms

 Computational complexity
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Computational complexity of H.264 decoding a 8K video in a Chrome browser
on an Intel i9-9900K CPU with 3.60GHz and 16 cores. Even with 800% CPU
usage, Chrome was not able to render the video.

N A

o
O <
" " o~ I
bl bl bl el



Limitations of Traditional
Compression Algorithms

Codec Efficienty and Complexity
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Credits: David Ronca - Netflix



Limitations of Traditional
Compression Algorithms

* Hitting the power wall too

* Not practical to run software codecs on mobile devices
or XR headsets and glasses

* Need to be in Hardware



Limitations of Traditional
Compression Algorithms

* Problems with hardware codecs

» Slower deployment (e.g., H.264 standard was released in
2003, and it is still the most popular codec for many
applications)

* Cross-platform compatibility
* No control for users



Limitations of Traditional
Compression Algorithms

* Handcrafted design of the algorithms — difficult &

takes time
e Content unaware or difficult to make the codecs content

aware

* Same codec is used across diverse settings
* E.g., treats a low complexity same as high complex video
* E.g., no distinction between a low res and a high res
video



Limitations of Traditional
Compression Algorithms

e Among others
* Limited coordination with transport protocols
* Synchronization issues

e Coarse-grained compression for adaptive streaming
scenarios — will be discussed in-depth in streaming

lecture



ML Based Compression

 Fundamental principles
e Data-driven
 Neural networks

* Learn the weights (training a neural network model by
passing a lot of example data samples)

Need large data sets for training and testing

* Need data parallel accelerators (e.g., GPUs or TPUs) for
practical speeds



ML Based Compression

* Benefits
* Can be software-driven
* Flexible across different types of content



ML Based Compression

* Neural Networks Hiddon
* Input
* Weights
* Neurons
* Activation Function
* Qutput
* Loss function

* Change weights based
on loss

* Update weights

Input



ML Based Compression

* The concept has been around for decades, but

practical methods have become mainstream since
2018

* Popular models used for ML based compression
* AutoEncoders
* GANs
* Transformers
* Diffusion Models



ML Based Compression

* Layers of artificial neurons to process data in
complex patterns, ideal for capturing nonlinear
dependencies in data.

Basic operation example
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ML Based Compression

* Layers of artificial neurons to process data in
complex patterns, ideal for capturing nonlinear
dependencies in data.

( Input image

Image Compression Network
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ML Based Compression

 Auto Encoder

 Compresses input into a lower-dimensional code and
then reconstructs the output from this code

.......................................

Encoder Decoder

Weights & Latent code vector — the internal logic can be much more complex



ML Based Compression

 Auto Encoder

 Compresses input into a lower-dimensional code and
then reconstructs the output from this code

* A simple example — using Al



ML Based Compression

* GANs (Generative adversarial networks)

* Consist of two neural networks, the generator and the
discriminator, competing against each other to generate
data very similar to the original data, useful for high-
fidelity compression.

Discriminator input Target output

Noise vector |:> [ Generator ] E> Fake image |:> [ Discriminator ] |:> 0

Real image |:> [ Discriminator] |:> 1




Diffusion Model Based
CO m p reSS| O ﬂ Learn to denoise — that is, to gradually

_ reconstruct images from random noise.
Pre-trained

Timestep
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Transformer Based Compression

 Computational Attention based
 Computes ‘soft” weights that change during run time

* Attends more towards certain weights i.e., gives more
importance to certain regions
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Visual Attention

* Semantic or salient features

Create mask i.e., a probability mask to weight these regions



Learned Image Compression

.......................................

Encoder Decéder

Spatial redundancy — Convolutional neural networks (CNNs)



Learned Video Compression
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Encoder Decéder

Spatial & Temporal redundancy — 3D CNNs or LSTMs, need to estimate residuals



Learned Video Compression

* Example
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Video compression through image interpolation

Predict in-between frames from two reference frames

https://arxiv.org/pdf/1804.06919



Evolution of Video Codecs

18 Years

5 Years
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neural and classical video codecs showing
compression efficiency across generations.



Learned Point Cloud Compression
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Learned Point Cloud Compression

Encoding side

——+ Encoding Flow

https://mallesham.com/papers/vr-2024-paper-fumos.pdf



Vertices

Learned Mesh Compression
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Super Resolution of Low-Res
content to High Res
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Super Reso
content to

Video Segments
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Super Reso
content to

ution of Low Res

High Res

* (Can be applied on traditional compression settings

as well

 E.g., Compress excessively using traditional
codec, and use super resolution to enhance the
quality after decoding



Performance Metrics

e Quality
* PSNR
e SSIM
 VMAF - Netflix

* Compression ratio
* Latency

* Power consumption



Type of Codecs

e Generalized model

* Train on a large-scale dataset — as much data as possible
 Complex model

e Category-specific model

* Train on a particular class of dataset e.g., sports or
Netflix database

* Video-specific model
* Model specific to video — memorize the conent



Limitations

e Difficult to generalize

* There is never enough data to train a model

* We can circumvent this problem in certain scenarios
(e.g., when streaming on-demand stored content like
Netflix or YouTube)

* Not many devices have GPUs in practice
* High Power consumption



Summary of the Lecture

* Limitations of traditional algorithms
e Advances in ML based compression

* Auto encoders, GANs, Transformers, Attention,
Diffusion Models

e Super Resolution
* Performance metrics

Next up: smart glasses & internals
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