EECE5512 Networked XR Systems

Last Class - Recap

- Mesh Compression
 - Static meshes
 - Dynamic topology matching meshes
 - Time-varying meshes with varying topology

Lecture Outline for Today

- Quiz
- Limitations of traditional Compression
- Machine Learning based Compression
 - Video
 - Point cloud
 - Mesh

Traditional Compression Algorithms

- Video Compression
 - H.26x series
 - VP series
- Point cloud compression
 - MPEG GPCC, VPCC
- Mesh compression
 - Vertex and connectivity compression methods (e.g., Edgebreaker or TFAN), TVMC

- Reaching a saturation point in compression ratio
 - E.g., 2D video codecs have been engineered for decades

Computational complexity

Computational complexity of H.264 decoding a 8K video in a Chrome browser on an Intel i9–9900K CPU with 3.60GHz and 16 cores. Even with 800% CPU usage, Chrome was not able to render the video.

- Hitting the power wall too
 - Not practical to run software codecs on mobile devices or XR headsets and glasses
 - Need to be in Hardware

- Problems with hardware codecs
 - Slower deployment (e.g., H.264 standard was released in 2003, and it is still the most popular codec for many applications)
 - Cross-platform compatibility
 - No control for users

- Handcrafted design of the algorithms difficult & takes time
 - Content unaware or difficult to make the codecs content aware
- Same codec is used across diverse settings
 - E.g., treats a low complexity same as high complex video
 - E.g., no distinction between a low res and a high res video

- Among others
 - Limited coordination with transport protocols
 - Synchronization issues
 - Coarse-grained compression for adaptive streaming scenarios – will be discussed in-depth in streaming lecture

- Fundamental principles
 - Data-driven
 - Neural networks
 - Learn the weights (training a neural network model by passing a lot of example data samples)
 - Need large data sets for training and testing
 - Need data parallel accelerators (e.g., GPUs or TPUs) for practical speeds

- Benefits
 - Can be software-driven
 - Flexible across different types of content

- Neural Networks
 - Input
 - Weights
 - Neurons
 - Activation Function
 - Output
 - Loss function
 - Change weights based on loss
 - Update weights

 The concept has been around for decades, but practical methods have become mainstream since 2018

- Popular models used for ML based compression
 - AutoEncoders
 - GANs
 - Transformers
 - Diffusion Models

 Layers of artificial neurons to process data in complex patterns, ideal for capturing nonlinear dependencies in data.

Basic operation example

Convolution

 Layers of artificial neurons to process data in complex patterns, ideal for capturing nonlinear dependencies in data.

Allocate more bits to more important pixels

- Auto Encoder
 - Compresses input into a lower-dimensional code and then reconstructs the output from this code

Weights & Latent code vector – the internal logic can be much more complex

- Auto Encoder
 - Compresses input into a lower-dimensional code and then reconstructs the output from this code
- A simple example using Al

- GANs (Generative adversarial networks)
 - Consist of two neural networks, the generator and the discriminator, competing against each other to generate data very similar to the original data, useful for highfidelity compression.

Diffusion Model Based Compression Learn to

Learn to *denoise* — that is, to gradually reconstruct images from random noise.

Transformer Based Compression

- Computational Attention based
 - Computes 'soft' weights that change during run time
 - Attends more towards certain weights i.e., gives more importance to certain regions

Visual Attention

Semantic or salient features

Create mask i.e., a probability mask to weight these regions

Learned Image Compression

Spatial redundancy – Convolutional neural networks (CNNs)

Learned Video Compression

Spatial & Temporal redundancy – 3D CNNs or LSTMs, need to estimate residuals

Learned Video Compression

• Example $E_I = D_R$ Context Context

Video compression through image interpolation

Predict in-between frames from two reference frames

Evolution of Video Codecs

neural and classical video codecs showing compression efficiency across generations.

Learned Point Cloud Compression

Learned Point Cloud Compression

Learned Mesh Compression

Super Resolution of Low-Res content to High Res

Super Resolution of Low Rescontent to High Res

Super Resolution of Low Rescontent to High Res

- Can be applied on traditional compression settings as well
 - E.g., Compress excessively using traditional codec, and use super resolution to enhance the quality after decoding

Performance Metrics

- Quality
 - PSNR
 - SSIM
 - VMAF Netflix
- Compression ratio
- Latency
- Power consumption

Type of Codecs

- Generalized model
 - Train on a large-scale dataset as much data as possible
 - Complex model
- Category-specific model
 - Train on a particular class of dataset e.g., sports or Netflix database
- Video-specific model
 - Model specific to video memorize the conent

Limitations

- Difficult to generalize
 - There is never enough data to train a model
 - We can circumvent this problem in certain scenarios (e.g., when streaming on-demand stored content like Netflix or YouTube)
- Not many devices have GPUs in practice
- High Power consumption

Summary of the Lecture

- Limitations of traditional algorithms
- Advances in ML based compression
- Auto encoders, GANs, Transformers, Attention, Diffusion Models
- Super Resolution
- Performance metrics