FECE5698
Networked XR Systems

Networked XR System

E & B

Classical networked system pipeline

D1g1t1ze 3D spaces Network Transport Display Interfaces

Lecture Outline for Today

* Rendering Basics
* Edge/Cloud/Remote Rendering

Rendering Basics

« “Rendering or image synthesis is the process
of generating a photorealistic or non-
photorealistic image from a 2D or 3D model by
means of a computer program. ”

Rendered WhatsApp video
call on the glass (600x600
resolution, 20° FoV)

Rendering Basics

* Rendering is crucial in various fields such as video
games, simulations, movie production, and virtual
reality, providing the final appearance of models
and scenes with textures, colors, and lighting.

* Key Components:

* Models: The geometric data representing 3D objects.

e Textures: The surface details that give materials their
appearance.

* Lighting: The simulation of light to create shadows,
highlights, and color variations.

Rendering Basics

e Real-time Rendering:

* Used in video games and interactive graphics where images must be
generated at a rapid pace, typically 30 to 60 frames per second.

* Prioritizes speed over image quality, employing various optimizations
to achieve smooth performance.
e Offline (Pre-rendered) Rendering:

* Used in situations where image quality is paramount, such as in
feature films and high-quality animations.

* Takes more time to produce a single frame but achieves higher levels
of detail and lighting accuracy.

* Ray Tracing vs. Rasterization:

* Ray Tracing: Simulates the physical behavior of light to produce more
realistic images, calculating reflections, refractions, and shadows.

e Rasterization: Converts 3D models into 2D images quickly, often used
in real-time rendering, but less capable of complex light interactions
compared to ray tracing.

Rendering Basics

High level

Scene / Models

3D Graphics Tool(s)

Rendering Basics

Hardware view

Geometry _— GPU (inside)

Texture Maps

Rendering Basics

* Rendering pipeline

inte))
oy

Geometry . Pixel
Rasterization

Application . g
PP Processing Processing

int main ()

{

}

Rendering Basics — Key Steps

1.Model Loading: Importing 3D models into the
rendering engine.

2.Scene Setup: Positioning models, lights, and cameras
within the scene.

3.Geometry Processing: Transforming 3D coordinates to
2D screen space.

4.Rasterization: Converting 3D models into pixels on a 2D
surface.

5.Shading: Applying textures, colors, and lighting effects.

6.0utput: Rendering the final image for display or
storage.

Rendering Basics

* Application processing

_ An|mat|on =" Processing Processing

— Collision Detection int main(d

— Physics)
« Package Rendering Primitives
« Copy Textures

« Compile and load Shader programs

Vertex Fragment Textures
Shader Shader

L. Geometry L Pixel
Application . Rasterization -
Processing Processing

Rendering Basics

Application Processing

xtures / UV Maps
'ometry

GL_POINTS GL_LINES

NN

GL_LINE_STRIP GL_LINE_LOOP

AVAVARRVAA

GL_TRIANGLES GL_TRIANGLE_STRIP

VA VAN

Rendering Basics

Geometry Processing

» Per-Triangle and Per-Vertex Ops
— Vertex Shader (and others)
— Coordinate Transform
— Clipping
— Screen Mapping

Rendering Basics

o
=
o
0
Q
O
O
.
o
=
O
b
(©
N
=
O
oL
0
G
a'd

 Not Programmable
« Creates “Fragments

for shapes

n

(more than a pixel)

Fragment

ENEVEEEEEEEN
EESNEEEEEEEN
EEENNEEEEEEE
EEENEEENEEEE
EEEE 4 EN
HEEEENEENEES.

Rendering Basics

Pixel Processing

« Responsible for coloring pixels

No Shading Diffuse Shading

Rendering Basics

The Rendering Equation (simple)

L(w,) = Li(®;) cosb, f.(»;, ®,) dw,
)

Nz
W e

Cem Yuksel, Utah:

Rendering Basics

* Lighting and Shadows
. nghtlng Types:
Ambient: Soft, directionless light that simulates indirect
lighting.
e Directional: Parallel light rays, mimicking sunlight.

* Point: Light emitted from a single point, radiating in all
directions.

e Spot: Light emitted in a cone shape, like a flashlight.
* Shadows: Essential for depth and realism, with

techniques like shadow mapping and ray-traced
shadows to simulate how objects block light.

Rendering Basics

Z-buffer representation

T
@
A simple three-dimensional scene

Rendering Basics

 Shaders and the GPU

* Shaders: Small programs that run on the GPU to perform
custom rendering effects, such as lighting calculations,
texturing, and color adjustments.

* Types of Shaders: Vertex shaders, Fragment (or Pixel)
shaders, Geometry shaders, etc.

* GPU’s Role: Executes shaders to render images quickly,

efficiently handling complex calculations required for
realistic rendering.

Rendering Basics

Vertex Shaders

* Purpose: Vertex shaders process individual vertices of a 3D
model. They handle the transformation and lighting
calculations needed to project the 3D coordinates of
vertices onto the 2D screen space.

* Functionality:

* Apply transformations like translation, rotation, and scaling to
vertices.

* Adjust lighting properties based on the vertex position in the
scene.

e Pass per-vertex data (like position, normal, and texture
coordinates) to the next stages in the pipeline, often including the
fragment shader.

e Operation Level: Operate on each vertex in the model's
geometry, executing once per vertex.

Rendering Basics

Fragment shaders

* Purpose: also known as pixel shaders, operate on
fragments, which are potential pixels on the screen. They
determine the final color and other attributes of each pixel,
including texturing and lighting effects.

* Functionality:
* Calculate the color of each pixel based on textures, lighting, and
the material properties.

* Implement detailed surface effects like glossiness, roughness, and
ambient occlusion.

* Often used for complex visual effects like bump mapping, specular
highlights, and shadow computation.

* Operation Level: Execute once per fragment, which can be
more frequent than per-vertex due to the rasterization
process producing multiple fragments for each vertex,
especially when rendering detailed or close-up views.

Rendering Basics

Geometry Pixel
GPU Memory Processing Processing

(loaded by CPU)

// Input vertex data

// Output to the fragment shader. #version 300 es

out vec3 fragmentColor; o 3 : .
precision mediump float; 0 >d for ecifying the

// Uniform rotation matrix fragment shader

uniform mat4 rotationMatrix;
// Input data from the vertex shader

void main () { in vec3 fragmentColor;
// Output data

onMatrix *
out vecd

1.0y 8

void main () {
// We / se e color of the pixel.
color = vec4 (fragmentColor, 1.0);

gl Position = rotatedPosition;

lor to blue
mplicity.
fragmentColor = wvec3(0,0,1);

Rendering Basics

* Post-processing effects: Techniques applied to the
rendered image before final output to enhance
visual quality or achieve specific artistic styles.

* Common Effects:

* Bloom: Simulates light bleeding around bright areas.

* Motion Blur: Blurs objects based on movement, adding
realism or speed sensation.

* Depth of Field: Blurs parts of the scene not in focus,
mimicking camera lens effects.

* Color Grading: Adjusts the color palette to convey mood
or time of day.

Rendering Basics

* Post-processing effects

Real-time Rendering

* RTX 4090

PCI Express 4.0 Host Interface

Optical Flow Accelerator NVENC NVDEC

PC C C C C TPC L " " T " ’C [TPC PC
SM SM 5 A S| S S| 5 5 SM SM

y Controller

Mem

Memory C

s
5
o
@
b3

M SM
TPC TPC T T TPC

Real-time Rendering

* RTX 4090

1)

Real-time Rendering

* RTX 4090

Rendering Performance

 Frames per second
« Speed

* Polygons per frame
* Related to detalil

 Latency
* How long before system input to updated frame

* Power
« Computation and data transfer

Rendering Performance

Across different XR devices

Value Index (NUC11 w/ RTX 3070)

Triangles (in millions)

M1 MacBook Pro Magic Leap 2 Meta Quest Pro
' |
0 I
20
8 10 12 14 16 18 20 0 1 2 3 4 5 6 7 8 9 10 FPS 01 2 3 4 5 6 7 8 9 10

Triangles (in millions) Triangles (in millions) Triangles (in millions)

90

60

-30

FPS

Rendering Performance

* How about real-time rendering on ultra-thin
wearable XR devices like glasses?

Rendering Performance

* How about real-time rendering on ultra-thin
wearable XR devices like glasses?

Took 10 seconds to
render an image

Brilliant Labs Frame

Rendering Performance

 Rendering computation is expensive

* Offload rendering computation elsewhere for high-
quality

* Remote rendering
* Cloud rendering
* Edge rendering

* Distributed rendering

Local vs. Remote Rendering

* Local Rendering: The traditional approach where
rendering is done on the same device that is being used
for display and interaction.

 Remote Rendering: Offloading the rendering process to
a remote server or dedicated hardware and streaming
the output back to the local device.

e Advantages and Disadvantages:

* Local rendering leverages direct access to the GPU,
minimizing latency but can be limited by the device's
hardware capabilities.

 Remote rendering allows for more powerful processing and
potentially better graphics quality but can introduce network
latency and require stable connectivity.

Cloud Rendering

e Using cloud computing resources to perform
rendering tasks, with the rendered content
streamed back to the user's device.

 Scalability, access to high-performance hardware, and
the ability to offload intensive computational tasks from

local devices.

* Considerations: Requires reliable and fast internet
connection, and there can be concerns about data
security and latency.

Cloud Rendering

* Two-way latency

* Need to wait until the user’s pose is sent to the Cloud,
render the content, and receive the rendered video

Edge Server Rendering

e Edge rendering is done at the edge of the network,
near the user, rather than on centralized data
centers or the user's device.

* The purpose is to reduce latency, decrease the
bandwidth needed for high-quality graphics, and
alleviate the computational load on user devices.

* Key Benefits:
e Faster content delivery due to proximity to the user.
* Improved performance for real-time applications.

Edge Server Rendering

* Cellular Networks
* Rendering is placed at the Base station

* Need to stream rendered video from Base station
* Base stations are placed at a few miles away

* High frequencies provide high bandwidth but LOS
problem

* Lower frequencies are okay but low bandwidth

Edge Server Rendering

* WiFi
* Rendering is placed a computer within
the same WIFi LAN
* Closer to users
* Low latency

* Works for streaming compressed
rendered content

e What if we want to stream raw
video?

Edge Server Rendering

* WiFi
e Connect Meta Quest to your PC over Wi-Fi with Air Link

Air Link Connection Troubleshooting Guide

Metrics definitions for Air Link Q
e g Settings .

Edge Server Rendering

* Why do we want to stream raw video to XR
devices?

* Eliminate the computation demands of compression and
decompression

* Also saves latency

* mmWaves, THz or Optical links for higher
bandwidths

Edge Server Rendering

* Problem with higher frequency wireless links
* Links are not reliable — narrow wavelength
* Environmental impact
* Line of sight

* Problem with XR devices
e Users move around
* Mobility impact

Edge Server Rendering

* Let’s take an example scenario with Free space
optics (FSO)

* Narrow laser links, collimated beams

FSO-based VR Wireless Link

GM

* TX (renderer) fixed on ceiling. Ceiling
e RX(VRH) moves

* To realign the beam:

a. Localize RX [mm accuracy; via VRH’s in-built
localization]

b. Steer TX and RX [using Galvo Mirrors (GMs)]

X

Steering
Voltages

Pointing

- Function
| Voltage controls
Output Laser Mirror mirror’s angle

Beam \ ‘
(2-axis) \%’;—

Galvo Motors
. Input Laser
Mirror

Beam \

Horizontal
Mirror

Pointing Function:

* Pointing function P:

* Input: VRH/RX location [In the unknown VRH coordinate
system]

* Output: 4 GM Voltages [To steer TX and RX to realign beam]

e Learning P directly from (input, output) samples is
infeasible

e Our approach:

1. Learn GM models (two functions G and G’)
[Offline]
a) Inthe GM’s coordinate system (a known space).
b) Map to the VRH coordinate system.

2. Use GM functions to compute P.
[Real-time]

la. Learn GM Model (in GM
space)

Iit)mction G: (vq, Vol Output beam (p,

x).

i. Derive an expression for G from its
physical configuration.

ii. Learn the parameter values, using
training data.

Function G’: (target point 73— (v4, V5)
e Use G iteratively to estimate G’

Record the
voltage inputs

W (V4 v,)

1b. Map GM Functions to VRH
Space

(v1,v2) Ceiling

* Tantamount to estimating GMs’ positions in VRH
space.

* Need to estimate 12 parameters (6 for each GM).

Error = “misalignment
of paths from
parameters

1. Gather training samples (aligned beam state).
* (VRH Position, 4 voltages) for each sample.

2. Define an error function for given parameter (v3,v4) T
values. e

3. Determine parameter values that minimize the
total loss over samples.

2. Pointing Function P from GM
Functions

Pointing Function P:

* [nput: VRH position.
e Output: 4 Voltages.

. Approach (Real-Time):

* Initialize voltages v,, v,, V3, v,

(p, X) =G (v, v,) TX-beam output
specs

houivy, ©r=P) Rbeam
Similarly, compute new (v, v,).
Iterate.

(v1,v2) Ceiling

FSO-VR Prototype Design

* Link Design
* Divergent beam offered higher movement tolerance.
* 10 and 25 Gbps links.

X VRH ,‘ GM Collimator
* Prototype: ™ iy

Adjustable
Collimator

5 otation 3
Stage

FSO-based VR Link Performance

1 I T I I I
o N B~ O

40 10 o~
| g 5 20-
l 2 ik
n L ~ ¥ &
£ 20- 2 &
o L4 < 5 10
g’ Q
10 - > & ° 54
c
0-_- -0 0+
T T T T T T T T T T T T
0 50 100 150 200 250 0 50 100 150 200 250
Time (s) Time (s)

e Performance could be much improved, with customized
components.

* E.g., higher tracking frequency, customized optical
components.

Throughput (Gb/s)

THz Band based VR Link

* Above 100GHz Radio — T :
frequencies - 5
o Affected smaller
obstacles e.g., @ -
raindrops or =7
atmospheric
effects, in

additional regular
blockage issues

THz Band based VR Link

* Need Beam alignment —— ' :
algorithms - 5
e RF anchors can be 7\
placed in the ‘_
environment for =7
absolute location
estimate
* Predict, track and

point beams based on
mobility models

mmWave based VR Links

User rotated
her head

SNR is too low
to decode!

SNR is too low
to decode!

User raised
her hand

-

SNR (in dB)
- M [
o o o

o

LOS

LOS blocked by
hand

Required SNR by VR headset

LOS blocked by LOS blocked by

head

body

NLOS

Abari et.al

mmWave based VR Links

* Build a highly directional antenna by packing
multiple antenna elements into an array, and
controlling the phase of each element.

mmWaves based VR Links

* HTC Vive

O VIVE

VIVE WIRELESS ADAPTER

Distributed or Parallel Rendering

* Splitting rendering tasks across multiple machines
or nodes, often used in high-end graphics
production and complex simulations.

* Each node processes a portion of the rendering task,
and the results are combined to produce the final image
or animation.

Distributed or Parallel Rendering

* Pixar’s RenderFarm

Render their
big-screen 3d
animated
films

Summary of the Lecture

* Rendering Basics

* Types of rendering
* Rendering pipeline
* Real-time rendering

Next up: Hybrid Rendering

	Slide 1: EECE5698 Networked XR Systems
	Slide 2: Networked XR System
	Slide 3: Lecture Outline for Today
	Slide 4: Rendering Basics
	Slide 5: Rendering Basics
	Slide 6: Rendering Basics
	Slide 7: Rendering Basics
	Slide 8: Rendering Basics
	Slide 9: Rendering Basics
	Slide 10: Rendering Basics – Key Steps
	Slide 11: Rendering Basics
	Slide 12: Rendering Basics
	Slide 13: Rendering Basics
	Slide 14: Rendering Basics
	Slide 15: Rendering Basics
	Slide 16: Rendering Basics
	Slide 17: Rendering Basics
	Slide 18: Rendering Basics
	Slide 19: Rendering Basics
	Slide 20: Rendering Basics
	Slide 21: Rendering Basics
	Slide 22: Rendering Basics
	Slide 23: Rendering Basics
	Slide 24: Rendering Basics
	Slide 25: Real-time Rendering
	Slide 26: Real-time Rendering
	Slide 27: Real-time Rendering
	Slide 28: Rendering Performance
	Slide 29: Rendering Performance
	Slide 30: Rendering Performance
	Slide 31: Rendering Performance
	Slide 32: Rendering Performance
	Slide 33: Local vs. Remote Rendering
	Slide 34: Cloud Rendering
	Slide 35: Cloud Rendering
	Slide 36: Edge Server Rendering
	Slide 37: Edge Server Rendering
	Slide 38: Edge Server Rendering
	Slide 39: Edge Server Rendering
	Slide 40: Edge Server Rendering
	Slide 41: Edge Server Rendering
	Slide 42: Edge Server Rendering
	Slide 43: FSO-based VR Wireless Link
	Slide 44: Pointing Function:
	Slide 45: 1a. Learn GM Model (in GM space)
	Slide 46: 1b. Map GM Functions to VRH Space
	Slide 47: 2. Pointing Function P from GM Functions
	Slide 48: FSO-VR Prototype Design
	Slide 49: FSO-based VR Link Performance
	Slide 50: THz Band based VR Link
	Slide 51: THz Band based VR Link
	Slide 52: mmWave based VR Links
	Slide 53: mmWave based VR Links
	Slide 54: mmWaves based VR Links
	Slide 55: Distributed or Parallel Rendering
	Slide 56: Distributed or Parallel Rendering
	Slide 57: Summary of the Lecture

