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Lecture Outline for Today

• Rendering Basics

• Edge/Cloud/Remote Rendering



Rendering Basics

• “Rendering or image synthesis is the process 
of generating a photorealistic or non-
photorealistic image from a 2D or 3D model by 
means of a computer program. ”



Rendering Basics

• Rendering is crucial in various fields such as video 
games, simulations, movie production, and virtual 
reality, providing the final appearance of models 
and scenes with textures, colors, and lighting.

• Key Components:
• Models: The geometric data representing 3D objects.

• Textures: The surface details that give materials their 
appearance.

• Lighting: The simulation of light to create shadows, 
highlights, and color variations.



Rendering Basics

• Real-time Rendering:
• Used in video games and interactive graphics where images must be 

generated at a rapid pace, typically 30 to 60 frames per second.
• Prioritizes speed over image quality, employing various optimizations 

to achieve smooth performance.

• Offline (Pre-rendered) Rendering:
• Used in situations where image quality is paramount, such as in 

feature films and high-quality animations.
• Takes more time to produce a single frame but achieves higher levels 

of detail and lighting accuracy.

• Ray Tracing vs. Rasterization:
• Ray Tracing: Simulates the physical behavior of light to produce more 

realistic images, calculating reflections, refractions, and shadows.
• Rasterization: Converts 3D models into 2D images quickly, often used 

in real-time rendering, but less capable of complex light interactions 
compared to ray tracing.



Rendering Basics

High level



Rendering Basics

Hardware view



Rendering Basics

• Rendering pipeline



Rendering Basics – Key Steps

1.Model Loading: Importing 3D models into the 
rendering engine.

2.Scene Setup: Positioning models, lights, and cameras 
within the scene.

3.Geometry Processing: Transforming 3D coordinates to 
2D screen space.

4.Rasterization: Converting 3D models into pixels on a 2D 
surface.

5.Shading: Applying textures, colors, and lighting effects.

6.Output: Rendering the final image for display or 
storage.



Rendering Basics

• Application processing



Rendering Basics
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Rendering Basics

• Lighting and Shadows
• Lighting Types:

• Ambient: Soft, directionless light that simulates indirect 
lighting.

• Directional: Parallel light rays, mimicking sunlight.

• Point: Light emitted from a single point, radiating in all 
directions.

• Spot: Light emitted in a cone shape, like a flashlight.

• Shadows: Essential for depth and realism, with 
techniques like shadow mapping and ray-traced 
shadows to simulate how objects block light.



Rendering Basics

Z-Buffer – Composite depth 

map after rasterization

Z-Culling – Early z-test to 

avoid pixel processing

Z-Test – Depth test in pixel 

processing stage



Rendering Basics

• Shaders and the GPU
• Shaders: Small programs that run on the GPU to perform 

custom rendering effects, such as lighting calculations, 
texturing, and color adjustments.

• Types of Shaders: Vertex shaders, Fragment (or Pixel) 
shaders, Geometry shaders, etc.

• GPU’s Role: Executes shaders to render images quickly, 
efficiently handling complex calculations required for 
realistic rendering.



Rendering Basics

Vertex Shaders

• Purpose: Vertex shaders process individual vertices of a 3D 
model. They handle the transformation and lighting 
calculations needed to project the 3D coordinates of 
vertices onto the 2D screen space.

• Functionality:
• Apply transformations like translation, rotation, and scaling to 

vertices.
• Adjust lighting properties based on the vertex position in the 

scene.
• Pass per-vertex data (like position, normal, and texture 

coordinates) to the next stages in the pipeline, often including the 
fragment shader.

• Operation Level: Operate on each vertex in the model's 
geometry, executing once per vertex.



Rendering Basics

• Purpose: also known as pixel shaders, operate on 
fragments, which are potential pixels on the screen. They 
determine the final color and other attributes of each pixel, 
including texturing and lighting effects.

• Functionality:
• Calculate the color of each pixel based on textures, lighting, and 

the material properties.
• Implement detailed surface effects like glossiness, roughness, and 

ambient occlusion.
• Often used for complex visual effects like bump mapping, specular 

highlights, and shadow computation.

• Operation Level: Execute once per fragment, which can be 
more frequent than per-vertex due to the rasterization 
process producing multiple fragments for each vertex, 
especially when rendering detailed or close-up views.

Fragment shaders



Rendering Basics



Rendering Basics

• Post-processing effects: Techniques applied to the 
rendered image before final output to enhance 
visual quality or achieve specific artistic styles.

• Common Effects:
• Bloom: Simulates light bleeding around bright areas.

• Motion Blur: Blurs objects based on movement, adding 
realism or speed sensation.

• Depth of Field: Blurs parts of the scene not in focus, 
mimicking camera lens effects.

• Color Grading: Adjusts the color palette to convey mood 
or time of day.



Rendering Basics
• Post-processing effects



Real-time Rendering

• RTX 4090



Real-time Rendering

• RTX 4090



Real-time Rendering

• RTX 4090



Rendering Performance

•  Frames per second
• Speed

• Polygons per frame
• Related to detail

• Latency
• How long before system input to updated frame

• Power
• Computation and data transfer



Rendering Performance

Across different XR devices



Rendering Performance

• How about real-time rendering on ultra-thin 
wearable XR devices like glasses?



Rendering Performance

• How about real-time rendering on ultra-thin 
wearable XR devices like glasses?

Took 10 seconds to 
render an image

Brilliant Labs Frame



Rendering Performance

• Rendering computation is expensive
• Offload rendering computation elsewhere for high-

quality

• Remote rendering

• Cloud rendering

• Edge rendering

• Distributed rendering



Local vs. Remote Rendering

• Local Rendering: The traditional approach where 
rendering is done on the same device that is being used 
for display and interaction.

• Remote Rendering: Offloading the rendering process to 
a remote server or dedicated hardware and streaming 
the output back to the local device.

• Advantages and Disadvantages:
• Local rendering leverages direct access to the GPU, 

minimizing latency but can be limited by the device's 
hardware capabilities.

• Remote rendering allows for more powerful processing and 
potentially better graphics quality but can introduce network 
latency and require stable connectivity.



Cloud Rendering

• Using cloud computing resources to perform 
rendering tasks, with the rendered content 
streamed back to the user's device.
• Scalability, access to high-performance hardware, and 

the ability to offload intensive computational tasks from 
local devices.

• Considerations: Requires reliable and fast internet 
connection, and there can be concerns about data 
security and latency.



Cloud Rendering

• Two-way latency
• Need to wait until the user’s pose is sent to the Cloud, 

render the content, and receive the rendered video



Edge Server Rendering

• Edge rendering is done at the edge of the network, 
near the user, rather than on centralized data 
centers or the user's device.
• The purpose is to reduce latency, decrease the 

bandwidth needed for high-quality graphics, and 
alleviate the computational load on user devices.

• Key Benefits:
• Faster content delivery due to proximity to the user.

• Improved performance for real-time applications.



Edge Server Rendering

• Cellular Networks
• Rendering is placed at the Base station

• Need to stream rendered video from Base station
• Base stations are placed  at a few miles away

• High frequencies provide high bandwidth but LOS 
problem

• Lower frequencies are okay but low bandwidth



Edge Server Rendering

• WiFi
• Rendering is placed a computer within 

the same WIFi LAN

• Closer to users

• Low latency

• Works for streaming compressed 
rendered content

• What if we want to stream raw 
video?



Edge Server Rendering

• WiFi
• Connect Meta Quest to your PC over Wi-Fi with Air Link



Edge Server Rendering

• Why do we want to stream raw video to XR 
devices?
• Eliminate the computation demands of compression and 

decompression

• Also saves latency

• mmWaves, THz or Optical links for higher 
bandwidths



Edge Server Rendering

• Problem with higher frequency wireless links
• Links are not reliable – narrow wavelength

• Environmental impact

• Line of sight

• Problem with XR devices
• Users move around 

• Mobility impact



Edge Server Rendering

• Let’s take an example scenario with Free space 
optics (FSO)
• Narrow laser links, collimated beams



FSO-based VR Wireless Link

• TX (renderer) fixed on ceiling. 

• RX (VRH) moves 

• To realign the beam:
a. Localize RX      [mm accuracy; via VRH’s in-built 

localization]
b. Steer TX and RX  [using Galvo Mirrors (GMs)]

GM

(2-axis) 
Galvo 
Mirror

Pointing 
Function

Steering 
Voltages

VRH Location 

RX

Ceiling

T
X

FSO beam



Pointing Function:
• Pointing function P:

• Input: VRH/RX location [In the unknown VRH coordinate 
system]

• Output: 4 GM Voltages [To steer TX and RX to realign beam] 

• Learning P directly from (input, output) samples is 
infeasible

• Our approach:
1. Learn GM models (two functions G and G’)  

 [Offline]
a) In the GM’s coordinate system (a known space).
b) Map to the VRH coordinate system.

2. Use GM functions to compute P.   
 [Real-time]



1a. Learn GM Model (in GM 
space)

Function G: (v1, v2)         Output beam (p, 
Ԧ𝑥).

i. Derive an expression for G from its 
physical configuration.

ii. Learn the parameter values, using 
training data.

Function G’: (target point 𝜏)         (v1, v2) 

• Use G iteratively to estimate G’.

𝛕 
Target



1b. Map GM Functions to VRH 
Space

• Tantamount to estimating GMs’ positions in VRH 
space. 

• Need to estimate 12 parameters (6 for each GM).

1. Gather training samples (aligned beam state). 
• (VRH Position, 4 voltages) for each sample.

2. Define an error function for given parameter 
values.

3. Determine parameter values that minimize the 
total loss over samples.

Ceiling(v1, v2)

(v3, v4)

Error = “misalignment” 
               of paths from 
                 parameters



2. Pointing Function P from GM 
Functions

Pointing Function P:
• Input: VRH position.

• Output: 4 Voltages.
• Approach (Real-Time):

• Initialize voltages v1, v2, v3, v4

• (p, Ԧ𝑥) = G (v1, v2) TX-beam output 
specs

• New (v3, v4) = G’(𝛕 = p) RX-beam 
should hit p.

• Similarly, compute new (v1, v2).
• Iterate.

Ceiling(v1, v2)

New (v3, v4)

p

Ԧ𝑥

𝛕 
Target



FSO-VR Prototype Design

• Link Design
• Divergent beam offered higher movement tolerance.

• 10 and 25 Gbps links.

• Prototype: TX
RX



FSO-based VR Link Performance

• Performance could be much improved, with customized 
components.
• E.g., higher tracking frequency, customized optical 

components.



THz Band based VR Link

• Above 100GHz Radio 
frequencies
• Affected smaller 

obstacles e.g., 
raindrops or 
atmospheric 
effects, in 
additional regular 
blockage issues



THz Band based VR Link

• Need Beam alignment 
algorithms
• RF anchors can be 

placed in the 
environment for 
absolute location 
estimate

• Predict, track and 
point beams based on 
mobility models



mmWave based VR Links

Abari et.al



mmWave based VR Links

• Build a highly directional antenna by packing 
multiple antenna elements into an array, and 
controlling the phase of each element.



mmWaves based VR Links

• HTC Vive



Distributed or Parallel Rendering

• Splitting rendering tasks across multiple machines 
or nodes, often used in high-end graphics 
production and complex simulations.
• Each node processes a portion of the rendering task, 

and the results are combined to produce the final image 
or animation.



Distributed or Parallel Rendering

• Pixar’s RenderFarm

Render their 
big-screen 3d 
animated 
films



Summary of the Lecture

• Rendering Basics
• Types of rendering

• Rendering pipeline

• Real-time rendering

Next up: Hybrid Rendering
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