EECES5512
Networked XR Systems



Last Class - Recap

* Intro to Networked XR Systems
 Hardware aspects
e Software tools



Lecture Outline for Today

* Discuss Homework1
* Software tools

* Internal XR concepts
* Sensors

* Sensing Algorithms



XR SDKs

* Open3D

Open3D is an open-source
library that supports rapid
development of software
that deals with 3D data.
The Open3D frontend
exposes a set of carefully
selected data structures
and algorithms in both C++
and Python. The backend is
highly optimized and is set
up for parallelization.
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https://www.open3d.org/docs/release/tutorial/geometry/mesh.html
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XR SDKs

* ARKit — Mobile (Apple)

* ARKit combines device motion tracking, world tracking,
scene understanding, and display conveniences to
simplify building an AR experience.

let session = ARKitSession()

let worldInfo = WorldTrackingProvider()




XR SDKs

* ARKit — Vision Pro (Apple)

* Additional features like tracking —Eyes, Hands, Head, etc.

https://developer.apple.com/documentation/arkit/arkit in visionos
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XR SDKs

 ARCore — Mobile (Android)

ARCore is Google's augmented reality SDK
offering cross-platform APIs to build new
immersive experiences on Android, i0OS,
Unity, and Web.

Built-in Cloud Geospatial
sensors Anchors APl API

GPS for position and compass Create a map of an area for Leverage Google’s global-scale
for orientation. other users to localize against. 3D map as your canvas.



XR SDKs

* Oculus & MRTK
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XR Native Renderers

* OpenGL

* OpenGL is a cross-language, cross-platform application
programming interface for rendering 2D and 3D vector
graphics. The APl is typically used to interact with a GPU,

to achieve hardware-accelerated rendering.

m M

A Simple Triangle

https://learnopengl.com/Getting-started/Hello-Triangle
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XR Native Renderers

* DirectX
* Microsoft’s graphics API

DirectX is composed of multiple APls:

e Direct3D (D3D): Real-time 3D rendering API

e DXGI: Enumerates adapters and monitors and manages swap chains for Direct3D 10 and later.
e Direct2D: 2D graphics API

e DirectWrite: Text rendering API

 DirectCompute: API for general-purpose computing on graphics processing units

« DirectX Diagnostics (DxDiag): A tool for diagnosing and generating reports on components related to DirectX, such as audio, video, and input drivers
* XACT3: High-level audio API

e XAudio2: Low-level audio API

¢ DirectX Raytracing (DXR): Real-time raytracing API

e DirectStorage: GPU-oriented file 1/0O API

e DirectML: GPU-accelerated machine learning and artificial intelligence API

https://learn.microsoft.com/en-us/windows/win32/directx
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XR Native Renderers

 Vulkan

* Vulkan is a low-level low-overhead, cross-platform API
and open standard for 3D graphics and computing. It
was originally developed as Mantle by AMD, but was
later given to Khronos Group. It was intended to address
the shortcomings of OpenGL, and allow developers
more control over the GPU.

Vulkan is preferred over OpenGL nowadays



XR 3D Modeling

e Blender

* Blender is a free and open-source 3D computer graphics
software tool set used for creating animated films, visual
effects, art, 3D-printed models, motion graphics,
interactive 3D applications, virtual reality, and, formerly,
video games.

https://youtu.be/f-mx-Jfx91A?t=236
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XR 3D Modeling

* Maya
* Better modeling features compared to Blender
* Mainly for enterprises — not free, not open



XR Gaming Engines

* Unity & Unreal

e Unity was originally
an Apple game
engine but slowly
spread to many
platforms

* Both provide game
developers with a
2D and 3D platform
to create video
games.

Developer

Written in

Supported platforms

Primary audience

Ease of use

Open source

Price

2D/3D support

Unity

Unity Technologies

C# (Unity Scripting API)C++
(runtime)

Mobile, desktop, web, console,
VR/XR

Mobile, indie, and beginner
developers

Beginner-friendly interface

Free to use (until the product has

earned more than $100k in the
last 12 months)

Unreal

Epic Games

Mobile, desktop, console, VR/XR
(less than Unity offers)

AAA devs and indie teams
striving for realism

Steep learning curve

Yes

Free to use (a 5% royalty if the
product earns more than $1
million)

Yes (limited for 2D)



XR 3D Scanners

* Matterport (https://matterport.com)

https://jamesandharrisoncourt.com/virtual-tours
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XR 3D Scanners

* Scaniverse (https://scaniverse.com) - Mobile

* a 3D scanning app that supports all recent iPhones
and iPads, including those without LiDAR.
Scaniverse uses photogrammetry to accurately
reconstruct objects, rooms, and even whole
buildings and outdoor environments.


https://scaniverse.com/

XR 3D Scanners

e RealityCapture — photogrammetry + manual editing




Lecture Outline for Today

Hardware

Software

Internals




XR Internals

* Perception

* Motion to Photon Latency
* Positioning and Tracking

* 3D Reconstruction

* Real-time Rendering



XR Perception

* Visual
e Color
e Quality/spatial resolution
e Depth resolution
* Temporal resolution
* Field of view

* Non-visual
e Sense of touch
e Audio
e Balance
* Smell
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Positioning and Tracking

* You need to know where you are in the world

* GPS? T

* Visual ﬂ ;
e Inertial &

e Lidar
 RF

* 3-DoF
* 6-DoF

X, Y, Z & Yaw, Pitch, Roll



Positioning and Tracking

e Anchors

* Anchors ensure that objects appear to stay at the same
position and orientation in space, helping you maintain
the illusion of virtual objects placed in the real world.

 Plane Q
Wall

* Floor
Face...
Anything that you can identify well




Motion to Photon Latency

Motion Photon



3D Reconstruction

Stitching multiple 2D images to form a 3D image




Real-time Rendering

Scene |/ Models

3D Graphics Tool(s)




Real-time Rendering

Geometr T Pixel
y Rasterization

Application ! ;
PP Processing Processing

int main ()

{

}



Lecture Outline for Today

* Software tools

* Internal XR concepts
* Discuss Homework1l
* Sensors

* Sensing Algorithms



Sensors and Sensing Algorithms

* Popular Sensors
* Color camera
* Depth camera
* Microphone
* |nertial
* Gyro
* RF
* E.g., Functionality
* Positioning
* Tracking
* 3D Scene Reconstruction



Positioning and Tracking

 What to position and track?

* Users

* Hands

* Face

* Eyes

* Head

* Body

* Activity

* Physiological signals
* Environment

* Objects



Positioning and Tracking

* Why do we need it?

* For view port control

Place virtual content
Interact with virtual content
* Occlusion

* Adaptive rendering

e Persistent anchors

 And more...




Positioning and Tracking

* You need to know where you are in the world

* GPS? T

* Visual ﬂ ;
e Inertial &

e Lidar
 RF

* 3-DoF
* 6-DoF

X, Y, Z & Yaw, Pitch, Roll



Positioning and Tracking

e Typical metrics of importance
* Accuracy
* Latency
* Tracking drift
* Tracking jitter
* Update rate
* Reliability



Visual Tracking Algorithm

* Stepl: Capture images
* Mono or Stereo or multiple cameras

* Step2: Feature Extraction

 Features are detected in the first frame, and then

matched in the second frame.
ORB, SIFT, FAST, BRIEF, etc.

(a) Well-lit (568 matches) (b) Dim-lit (252 matches)



Visual Tracking Algorithm

* Stepl: Capture images
* Mono or Stereo or multiple cameras

* Step2: Feature Extraction

 Features are detected in the first frame, and then
matched in the second frame

N

_ Sudden turn Best case
£ (Bhort Drop in matches) &Vjﬂ:_:tg
st —— t
2 & )
c
5 0 = =
21600 Dim-lit
5 1200 (Fewer matches overall)
E’ 800
§ 400
m© 0 —
*El: 0 200 400 600 800 1000 1200 1400

Timeline

(c) Matches vs. Error



Visual Tracking Algorithm

» Step3: Optical flow estimation

Get rid of outliers



Visual Tracking Algorithm

 Step4: Estimate camera motion from optical flow

The optical flow field illustrates how features diverge
from a single point, the focus of expansion. The focus
of expansion can be detected from the optical flow
field, indicating the direction of the motion of the
camera, and thus providing an estimate of the
camera motion.



Commonly used visual tracking
tools

* ARKit, ARCore

* ORBSLAM series
* PTAM

* OpenVSLAM

* Kimera



Visual Tracking Algorithm

 Limitations:

* Heavily depends on the environment

* Lighting conditions

* Geometry of the objects in the environment
Uniform surfaces or color
Moving objects

Fails when too close to objects; camera view occluded



RF-based Tracking

* Range based tracking

* Convert received signal strength (RSS) or signal timing to

a distance estimate with respect to anchor nodes with
known locations.

* Problem: distance estimates may be erroneous, and the
circles may not intersect at a single point.
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RF-based Tracking

How to estimate location when the circles do not
intersect?

Idea: localize at a point that presents the minimum
error to the circles by some reasonable error measure.

k anchors at positions (xl.,yl.)
Assume node to be localized has actual location at

(%95 Vo)

Distance estimate between node 0 and anchori is v,

Error:

f; =1 _\/(xi _x0)2 +(yi _y0)2




RF-based Tracking

2%, (%, = x)+ 29, (V=) =1 =1 =X =V + X+ Y}

Linearization and Min Mean Square

Estimate
Ideally, we would like the error to be 0

fi=1 =N =%, + (3, =) =0

Re-arrange:

(ty + V0 )+ % (=22) + ¥ (-2 -1 = =x =y}

Subtract the last equation from the previous ones to
get rid of quadratic terms.

2—

Note that this is linear.

https://en.wikipedia.org/wiki/Ordinary_least_squares



Outside in and Inside out Tracking

QOutside in Inside out



Inertial sensing

* Accelerometer & Gyroscope

* Measuring linear acceleration (accelerometer) and / or
angular orientation rates (gyroscope)

* No transmitter, cheap, small, high frequency, wireless

https://youtu.be/-O0hSQFbt67U?t=24
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Inertial sensing

1. Acceleration Measurement

The IMU's accelerometer measures linear acceleration in three axes (a;, ay, a.) relative to its

local frame of reference. This is the starting point for position tracking.

Equation for acceleration:

However, the accelerometer measures the sum of the actual acceleration and gravitational
acceleration (g). So to get the actual acceleration, gravity needs to be removed using orientation

data from the IMU's gyroscope.



Inertial sensing

2. Removing Gravity

The acceleration measured by the IMU includes both the device's acceleration and the
gravitational force. The orientation of the IMU, determined by the gyroscope and potentially a
magnetometer, is used to rotate the measured acceleration to the global reference frame and

subtract gravity.

You can rotate the accelerometer data using the orientation (quaternion or rotation matrix) to align

it with the global frame and then subtract gravity:
ag!obal =R- a(t) — g
Where:

« R is the rotation matrix obtained from the gyroscope data.

« g is the gravity vector, typically (0, 0,9.81) m/s?in the global reference frame.



Inertial sensing

3. Velocity Estimation

Once you have the correct acceleration in the global frame, you can integrate this acceleration to

estimate velocity.

Equation for velocity:

v(t) = v(to) + /t Aglobal (T) AT

to

Where:
« v(t)is the velocity at time ¢,
. V(tO) is the initial velocity (which is often assumed to be zero),

. aggobag(T) is the acceleration in the global frame over time 7.



Inertial sensing

4. Position Estimation

Finally, the velocity is integrated to get the position over time:

Equation for position:

Where:

« p(t) is the position at time ¢,

p(tg) is the initial position (which may be assumed to be known),

« v(7) is the velocity over time T.



MU Position Tracking Example
Problem

An AR/VR headset is equipped with an IMU that provides the following data:

The headset starts at rest at position (0, 0,0) and time ¢t = 0.

At t = 1 second, the accelerometer readings are a, = 2 m/sz, a, =0 m/s2, and a, =
2
Om/s”.

The gyroscope indicates that the headset is not rotating (so no need to remove gravity in this

case).

Assume that gravity does not affect the motion since the headset is moving horizontally.

Question:

1.

2.

What is the headset's velocity after 1 second?

What is the headset's position after 1 second?

. What happens if the acceleration remains constant for the next 2 seconds (total time = 3

seconds)? Calculate the position at t = 3 seconds.



MU Position Tracking Example
Problem

Given:

« |Initial velocity v(0) = (0,0,0) m/s

« Accelerationa = (2,0,0) m/s2

Velocity is calculated by integrating the acceleration over time:

Since the acceleration is constant, the velocity after 1 second is:
v(1) =v(0)+a-t=(0,0,0) + (2,0,0) -1 =(2,0,0)m/s

Answer:

The velocity at t = 1 second is (2,0,0) m/s.



MU Position Tracking Example
Problem

Now, use the velocity to calculate the position. The position is calculated by integrating the

velocity over time:

Since the velocity is increasing linearly from 0 to 2 m/s, the average velocity over the first second
is:
v(0)+v(1) (0,0,0) + (2,0,0)

Vavg — 9 — 2 = (1,0,0) IIl/S

Now, calculate the position:
p(1l) = p(0) 4+ vayg - t = (0,0,0) + (1,0,0) - 1 = (1,0,0) m

Answer:

The position at ¢ = 1 second is (1,0, 0) m.



Inertial sensing

e Drift
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3D Reconstruction Algorithm

Camera Calibration
Depth Sensing
Surface Extraction
Texture Generation




3D Reconstruction

e Camera Calibration
. I\/!ultlpl.e cameras 5( e s >|:|
* Distortion
e |Intrinsic and extrinsic
parameters are different for
different cameras . . .

e

=



3D Reconstruction Algorithm

e Camera Calibration

* Input: set of pictures

* Output: camera position,
orientation, intrinsic
parameters (focal length,
optical center)




3D Reconstruction Algorithm

* Depth Sensing
* Input: set of calibrated images

e Qutput: distance to object for each
pixel in the image

 Popular methods
e Stereo triangulation
* Time of flight
e Structured light projection



3D Reconstruction Algorithm

* Depth Sensing
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Stereo Triangulation

Zed Camera



3D Reconstruction Algorithm

* Depth Sensing

distance d

time t

Time of flight



3D Reconstruction Algorithm

* Depth Sensing

Target

Camera/Sensor |
‘1 Azure Kinectvl
Structured Light Projector

Structured light projection



3D Reconstruction Algorithm

* Depth Sensing

Distance & range Medium to far Short to medium &  Short & Limited Far & scalable
(depending on the  scalable cm to 2m cms 30-50cm to 20-50m
distance of the 2
cameras) & limited

2m to 5m
Resolution Medium Medium Varies High
Depth accuracy Medium Medium to very Very high Medium

high in short range

Software High Medium High Low
complexity
Real-time capability Low Low Low High
Low light behaviour = Weak Good Good Good
Outdoor light Good Weak Weak Weak to good
Compactness Medium Medium Medium Very compact
Material costs Low High High Medium
Total operating cost = High Medium to high High Medium
(including

calibration efforts)

https://www.azom.com/article.aspx ?ArticlelD=16003



3D Reconstruction Algorithm

 Surface Extraction from Depth

* Input: set of calibrated images & depth maps
e OQutput: mesh of object




3D Reconstruction

* Texture Generation

* Input: set of calibrated images and mesh of object
e Qutput: atlas and texture




Summary of the Lecture

* Discuss Homework1l
* XR Internals

* Sensors

* Sensing Algorithms

Next Up: XR Data Structures
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