EECE5512 Networked XR Systems

Last Class - Recap

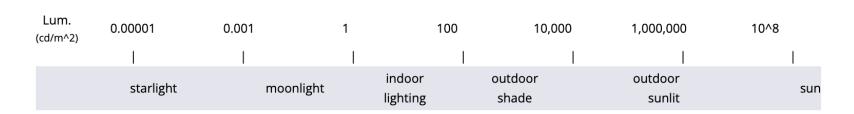
Sensing Algorithms

Lecture Outline for Today

- Quiz
- XR Data Structures, 3D Representations, formats
 - 2D Videos
 - Stereo/3D Videos
 - Multi-view 2D Videos
 - 2D/Flat 360 Degree Videos
 - Stereo/3D 360 Degree Videos
 - 3D/6-DoF Videos (point clouds, meshes, depth maps)
 - Implicit Neural Representations
 - Gaussian splats

Why XR Data Representations are Important?

Variety of XR display devices
Variety of networks to deliver XR
content


Implications across network (bandwidth), display (rendering), user (experience)

- Fixed data structure
- Color attributes
 - 3 Channels
 - 8 bits each channel
- Color Space Formats
 - RGB 24 bits
 - YUV (Luma & Chroma)
 - YUV420 12 bits
 - YUV422 16 bits
 - YUV444 24 bits

2D HDR Videos

- High dynamic range here range is light intensity
- This means that bright objects and dark objects on the same screen can be shown to high degrees of brightness and darkness if the display supports it
- High data rate: 96 bits per pixel, 32 bits per channel
- Dolby vision vs. HDR10
 - Dynamic & Static HDR for display

- Limitations
 - Not immersive (enough)
 - Cannot pan, tilt or zoom
 - Not interactive
 - Users are passive observers
 - Limited FoV
 - Viewers can only see what the camera captures in small field of view

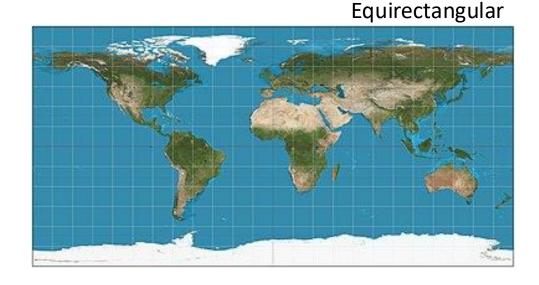
Stereo Videos

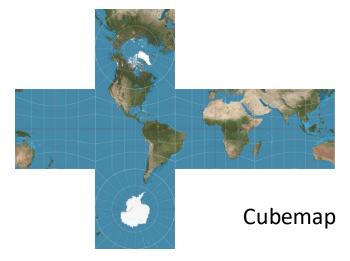
- Captured using two cameras
 - one per each eye

Provides depth perception

 More realistic than regular (monocular) 2D videos

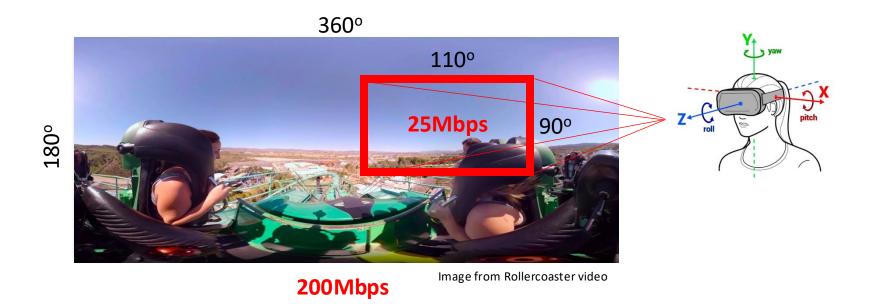
Apple rebranded them recently as spatial videos


- Flat 360-degree videos are similar to 2D videos
 - RGB or YUV channels
 - Captured using an omnidirectional camera or a collection of cameras.
 - Typically, 360 degrees horizontal, 180 degrees vertical
 - During the playback, the user views a particular viewport



3 degrees of freedom

Format


- Cubmaps are efficient for hardware
- A lot of pixels are repeated (e.g., top row) for equirectangular format

- Display devices
 - Most displays like personal computers, phones, headsets
 - Phones use gyroscope to move around the scene

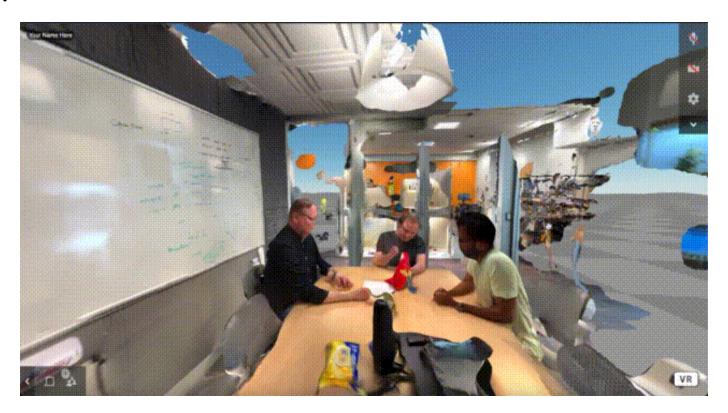
- Limitations
 - Limited interaction no translation
 - A well-known problem bandwidth inefficient

Stereo 360?

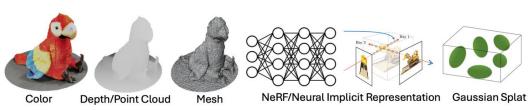
• Based on our discussion so far.. What is stereo 360?

• Is it useful? If so, when and where?

3D 360 Degree Videos


- Allows true 6 degrees of freedom
 - Translation, and Rotation
- Also known as 4D scene x, y, z + t
- Objects or spaces
- Typically requires multiple cameras to capture 3D videos
- Allows interaction

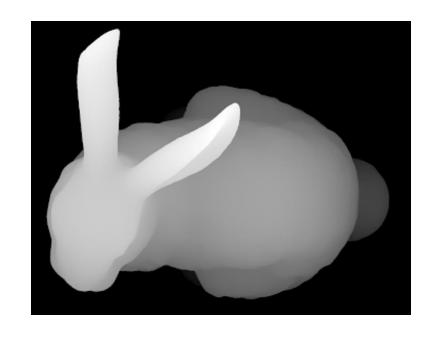
Objects



Hologram

Spaces

- Data Representations
 - Depth Maps
 - Point Clouds
 - Meshes
 - Neural implicit representations (NeRF)
 - Gaussian Splat

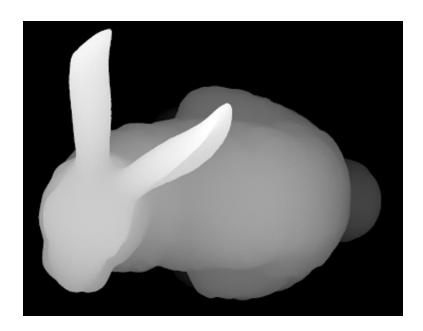


3D Representation	Format	Capture	Rendering	Data Rate	Quality
RGB-D	Color + depth images	Fast	Slow	Medium	Medium
Point Cloud	Points $(x, y, z) + (r, g, b)$	Fast	Slow	High	Low
Mesh	Vertices, edges, faces	Medium	Medium/Fast	Medium/Low	Medium/High
NeRF	Neural network	Slow	Medium/Slow	High	High
Gaussian Splats	3D Gaussians	Slow	Fast	High	High

- Depth maps contain information about the distance of objects from a specific perspective or reference point (like a camera lens).
- Each pixel is assigned a value to represent the distance of that pixel from the reference point which creates a 3D representation of the scene for its RGB image or virtual scene.

- Captured using
 - Depth sensors
 - Stereo Triangulation
 - ToF, Structure light
 - 3D modelling
 - Computer Vision or ML (depth estimation)

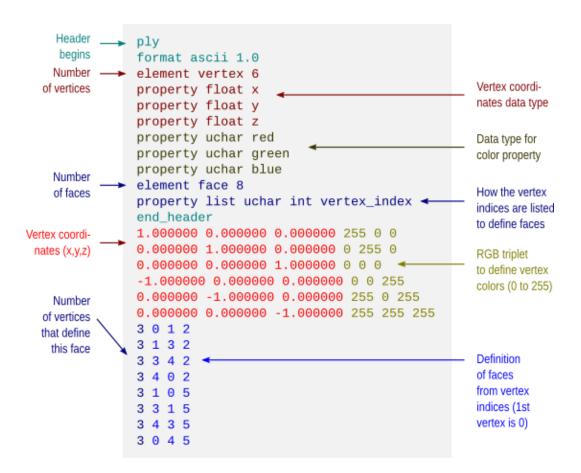
- Typically, the white pixels represent the part of the scene that is closest to the camera lens, and the black pixels represent the part of the scene that is furthest.
- But there's no set standard how to represent the map


Bunny depth map

- Images but how many channels?
- Depth maps
 - Do we need 3 channels like RGB?
- Bit depth
 - One channel depth
 - 8 bits range up to 256 (any unit like meters or cm/mm)
 - 16 bits range up to 2^16 units etc

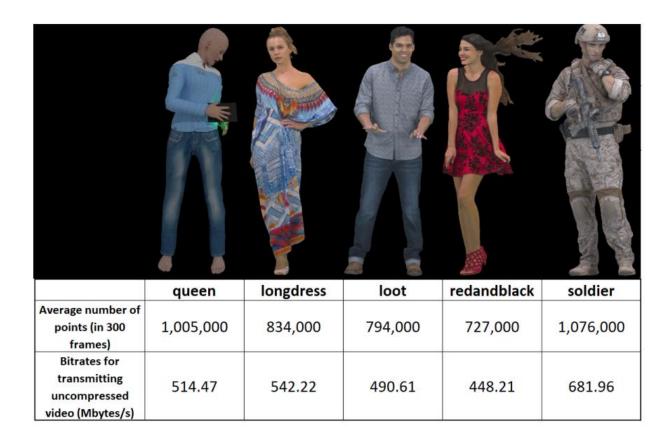
- Popular Depth Camera or Sensor: ZED
 - Depth can be captured at longer ranges, up to 20m.
 - Frame rate of depth capture can be as high as 100 FPS.
 - Field of view, up to 110° (H) x 70° (V).
 - The camera works indoors and outdoors, contrary to active sensors such as structured-light or time of flight.
 - Stereo triangulation

- Limitations of this representation
 - Fixed size data structure (i.e., image representation)
 - Inefficient storage of depth
 - Most pixels are not occupied


- A point cloud is a discrete set of data points in space.
- Or a set of 3D independent points
- Each Point (X, Y, Z) + Attributes
- Attributes: Color, Alpha, Reflectance

- Captured using
 - Regular 2D camera array Photogrammetry
 - Depth sensing LiDAR scanning, Time of Flight
 - 3D modelling

File format (how it is stored in a file)


.ply

- Representation
 - Each Point is a floating-point number 32 bits
 - <X, Y, Z> : 96 bits
 - RGB: 3 channels: 24 bits
 - Also, has other attributes sometimes (light related)
 - Each point: 96 + 24 bits or 15 bytes
- Typically, a point cloud has thousands to millions of points – guess the data rate numbers

 What is the file size of the point cloud that has 5 million points?

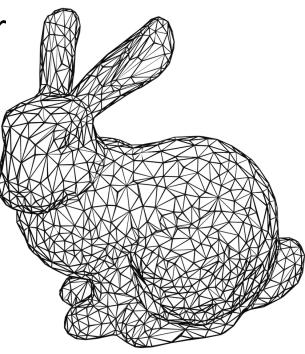
Sample data numbers

- Popular sensor laser scanning
 - 830-grams
 - 100m Range
 - 300,000 Points per Second
 - 360° Horizontal FOV
 - 30° ± 15° Vertical FOV
 - Costly (>\$10,000)

Point Cloud vs Depth Map

- Both are depth data structures
- A depth map is a 2d image with depth. It only shows the nearest point for each pixel from the direction its oriented.
- A point cloud is a bunch of xyz points, they can be in front of other points.
- Depth map size is fixed while point cloud size varies over time
- Depth map is depth only, while point clouds are often baked with color texture information

- Limitations
 - Arbitrary data structure
 - Changes number of points in two consecutive frames
 - Creates problems during compression
 - Requires high bandwidth to represent objects or spaces
 - Lacks knowledge of surfaces or requires huge number of points to represent a surface


 A set of polygons, connected by their common edges or vertices

Typically represented by triangles

Why triangle? Why not other polygons?

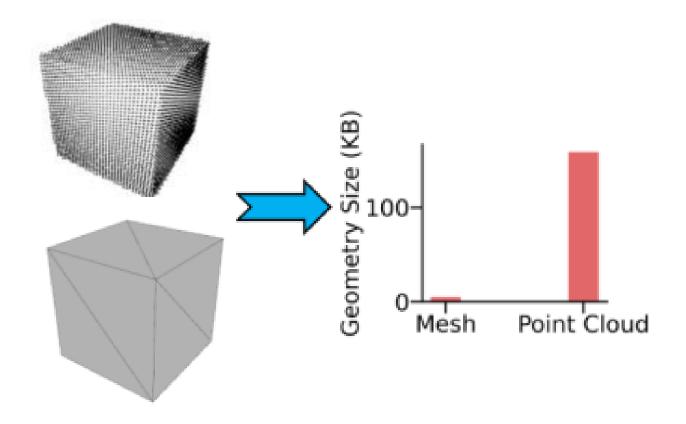
• By definition, a triangle always lies on a single plane, providing a flat surface.

 This planarity ensures there aren't any distortions when rendering a triangle, making it reliable for building complex 3D shapes.

- Capturing mesh data structure
 - No native support from sensors
 - Need to extract mesh polygons from depth maps or point clouds

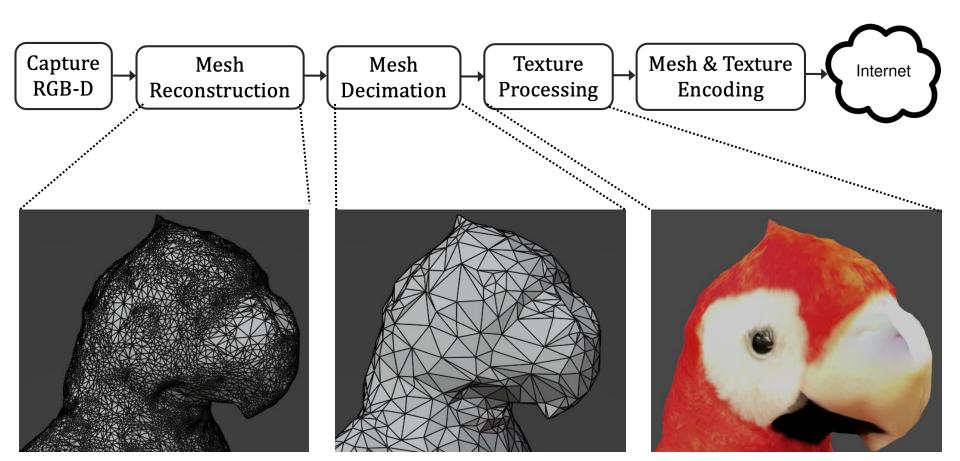
- Data representation
 - Each frame has vertices and connectivity
 - Raw size depends on file format next slide
 - Color texture is stored independently, so there is also mapping information from texture to polygons

File format - .ply


Mesh

• File format - .obj

```
# List of geometric vertices, with (x, y, z, [w]) coordinates, w is optional and defaults to 1.0.
v 0.123 0.234 0.345 1.0
v ...
# List of texture coordinates, in (u, [v, w]) coordinates, these will vary between 0 and 1. v, w are optional
and default to 0.
vt 0.500 1 [0]
vt ...
# List of vertex normals in (x,y,z) form; normals might not be unit vectors.
vn 0.707 0.000 0.707
vn ...
# Parameter space vertices in (u, [v, w]) form; free form geometry statement (see below)
vp 0.310000 3.210000 2.100000
vp ...
. . .
# Polygonal face element (see below)
f 1 2 3
f 3/1 4/2 5/3
f 6/4/1 3/5/3 7/6/5
f 7//1 8//2 9//3
f ...
# Line element (see below)
l 5 8 1 2 4 9
```


Mesh vs. Point Cloud

Meshes are much more compact (raw files)

Mesh

 But extracting meshes is computationally intensive task, unlike point clouds that are readily available

Recap: 3D Data Structures

- Depth Map vs. Point Cloud vs. Mesh
 - Depth maps and point clouds are simple, easy to manipulate, quickly available
 - Meshes are compact and requires significantly less bandwidth, but are computationally heavy to extract
 - Depth maps are fixed in size while the other two have arbitrary sizes
 - Meshes define surfaces while the other two not
 - Meshes are approximate 3D data structures while the other two represent accurate points

Quiz

- Monocular
- Stereoscopic
- Multi-view

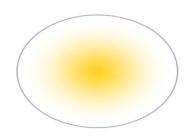
- Mono or monocular
 - Single camera
 - Simple, low cost
- Limitations
 - No depth perception

- Stereo or Stereoscopic
 - 2 cameras
- Depth perception depends on the baseline

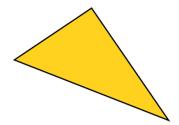
 Limited by small field of view

Apple spatial videos

- Multi-view videos
 - Typically, tens to hundreds of cameras are deployed to get full 3D 360° view of the scene of interest
 - Highest level of immersion
 - Costly
 - Very infra heavy
 - Bandwidth heavy
 - Compute heavy
 - Hard (almost impossible) to get in real-time/live


Implicit Neural Representation

- A fully-connected neural network that can generate novel views of complex 3D scenes, based on a partial set of 2D images.
- Set of weights
- To render a view, need to query the neural network by inputting the pose info


$$(x,y,z,\theta,\phi) \to \boxed{\bigcirc} \to (RGB\sigma)$$

$$F_{\Theta}$$

Gaussian Splats

Scene is represented with a number of gaussian distributions

Mesh is made up of triangles

Gaussian Splat

•Position: where it's located (XYZ)

•Covariance: how it's stretched/scaled (3x3 matrix)

•Color: what color it is (RGB)

•Alpha: how transparent it is (α)

NeRF

Summary of the Lecture

- XR Data Structures
 - 2D videos
 - 360° videos
 - 3D videos
 - Depth Map
 - Point Cloud
 - Mesh
 - View-immersion
 - Mono
 - Stereo
 - Multi-view
 - Implicit neural representations