EECE5512 Networked XR Systems

Last Class - Recap

- Quiz
- XR Data Structures, 3D Representations, formats
 - 2D Videos
 - Stereo/3D Videos
 - Multi-view 2D Videos
 - 2D/Flat 360 Degree Videos
 - Stereo/3D 360 Degree Videos
 - 3D/6-DoF Videos (point clouds, meshes, depth maps)
 - Implicit Neural Representations
 - Gaussian splats

Lecture Outline for Today

- Remaining XR/3D Data Representations
 - Implicit Neural Representations
 - Gaussian splats
- View Immersion
- Capturing 3D Videos for Network Transmission
 - Scene Capture
 - Network & Application Interplay
 - Capture Scenarios: Outside-in vs. Inside-out Capture
 - Offline vs. Live Capture
 - Depth Maps, Point Cloud, and Mesh Capture
 - Compute, Bandwidth vs. Latency Trade-offs

Implicit Neural Representation

- A fully-connected neural network that can generate novel views of complex 3D scenes, based on a partial set of 2D images.
- Set of weights
- To render a view, need to query the neural network by inputting the pose info

$$(x,y,z,\theta,\phi) \to \boxed{\bigcirc} \to (RGB\sigma)$$

$$F_{\Theta}$$

Gaussian Splats

Mesh is made up of triangles

Gaussian Splat

•Position: where it's located (XYZ)

•Covariance: how it's stretched/scaled (3x3 matrix)

•Color: what color it is (RGB)

•Alpha: how transparent it is (α)

NeRF

- Monocular
- Stereoscopic
- Multi-view

- Mono or monocular
 - Single camera
 - Simple, low cost
- Limitations
 - No depth perception
 - No interaction
 - No motion parallax
 - Limited FoV

- Stereo or Stereoscopic
 - 2 cameras
- Depth perception depends on the baseline

 Limited by small field of view

Apple spatial videos

- Multi-view videos
 - Typically, tens to hundreds of cameras are deployed to get full 3D 360° view of the scene of interest
 - Highest level of immersion
 - Costly
 - Very infra heavy
 - Bandwidth heavy
 - Compute heavy
 - Hard (almost impossible) to get in real-time/live

Lecture Outline for Today

- Remaining XR/3D Data Representations
 - Implicit Neural Representations
 - Gaussian splats
- View Immersion
- Capturing 3D Videos for Network Transmission
 - Scene Capture
 - Network & Application Interplay
 - Capture Scenarios: Outside-in vs. Inside-out Capture
 - Offline vs. Live Capture
 - Depth Maps, Point Cloud, and Mesh Capture
 - Compute, Bandwidth vs. Latency Trade-offs

Networked XR System

Classical networked application pipeline

XR networked application pipeline

Network Transport

Display Interfaces

Scene Capture

- Storage vs. Network Transmission
- What are the requirements?
 - Storage: Less data is better
 - Network: Low data rate is better

Scene Capture

 Data rates should be flexible to change as the network conditions changes – introduces some overhead

Capturing 2D Scenes or Videos

- Mostly mature work done for nearly 3 decades
- Plenty of hardware support to process 2D video streams
- Still a lot of research happening to reduce power consumption or improving the quality of experience under poor network conditions
 - Advances in low power image sensors

Scene Capture for Network Transmission

- Why transmit over network
 - Share 3D content with others
 - Machine to machine 3D analytics
 - Access 3D movies
 - Many use cases that we saw in the previous lectures

- Inside-out: Mobile Devices or Headsets
 - iPhone Lidar capture or stereo/spatial videos
 - 2 color cameras and a depth camera
 - Or Vision Pro or Quest3 captures

- Inside-out: Multi-camera infrastructure
 - Cameras are placed at vertices of an icosahedral tiling of a 0.92 m diameter hemisphere. This yields an average intercamera spacing of 18 cm.

- Inside-out : Multi-camera infrastructure
 - 80×80 cm base with a 1.8 m vertical pole for 22 cameras that are distributed on 7 levels with 3 cameras each, plus one upward-facing camera at the top

• Outside-in: Multi-camera infrastructure

• Outside-in: Multi-camera infrastructure

RGB & Depth cameras

Live Capture vs. Offline

- Offline capture does not pose problems
 - Enough time and resources to process the content
- Live capture has stringent requirements
 - Low latency (<100ms)
 - Trade quality with latency and bandwidth

Live 3D Capture

- Many options
 - Our favorite data structures:
 - Depth Maps
 - Point Clouds
 - Triangle Meshes

Live 3D Capture

- Different data structures captured at the sender have different implications on the network and receiver device
 - Rendering input: Triangles
 - Where you place the triangle extraction i.e., 3D mesh reconstruction computation matters (particularly for devices like headsets or phones).

Capturing Depth Maps

- Possible end-to-end streaming pipelines
 - Cloud based mesh reconstruction
 - In general, many resources Fast, High Quality
 - Caution on bandwidth requirement

Capturing Depth Maps

- Possible end-to-end streaming pipelines
 - Receiver-side mesh reconstruction
 - Fewer resources Slow, Low Quality
 - Additional power consumption due to reconstruction computation – bad for XR devices

Capturing Point Clouds

- Natively available on the sensor like Depth maps (e.g., Lidar)
- Or a depth map can be converted to a point cloud with a simple transformation
 - Very little computation for transformation
 - i.e., sender-side pipeline is not affected as much
- Possible end-to-end streaming pipelines?
 - Similar to Depth maps, including the implications

Capturing Meshes

- Meshes are not available natively on the sensor
 - Computation burden on the sender
 - No need for cloud (at least not for reconstruction; for rendering maybe – we'll talk about that later)
 - Triangle mesh is readily available for receivers no overhead of reconstruction, less power consumption
 - Sender overhead depending on outside-in or inside-out or the number of cameras

Real-world Examples

- Microsoft Holoportation
 - Extracts mesh on the sender-side
 - Outside-in capture
 - Infra heavy
 - Sufficient resources for 3D reconstruction

Real-world Examples

- Google Project Starline
 - 8 Depth videos are streamed
 - Reconstruction computation is placed on the receiver
 - Both sender and receiver have similar computation resources

Real-world Examples

- Apple Vision Pro
 - Sender-side reconstruction
 - 3D reconstruction maybe fast but still consumes power
 - Receivers could be other XR headsets

Live 3D Capture

Depth Map vs. Point Cloud vs. Mesh

- Outside-in
 - Most scenarios sender has more resources
 - Sender-side reconstruction strikes a good balance
- Inside-out
 - Most scenarios senders do not have enough resources (e.g., phones or headsets)
 - Cloud is a good option

Live 3D Capture

- Depth Map vs. Point Cloud vs. Mesh
- Implications on the network?
 - Each data structure has significantly different bandwidth requirement
 - It is unclear which is better still in experimental research phase, no consensus yet; need to study diverse scenarios.

Early Findings

Mesh is compact

Early Findings

 Mesh requires relatively lower bandwidth for a given final rendering visual quality

Live 3D Capture

- Depth Map vs. Point Cloud vs. Mesh
- Meshes are generally superior assuming we can tackle the computation challenge on the sender side
- Several reasons
 - Compact
 - High resolution texture
 - Compatible for rendering hardware triangles

- Texture is given we can use existing hardware pipelines for 2D videos to capture and stream textures
- Extracting meshes is a complex process
 - Involves a series of computationally expensive reconstruction steps
 - Outside-in scenario: fusing multiple scenes together; adds additional computation

- Single camera vs. multi camera reconstruction
 - GPU memory runs out of memory quickly
 - Depends on the voxel resolution
 - What is voxel?

• Texture vs. Mesh bandwidth

Summary of the Lecture

- Scene Capture
 - Computation, bandwidth, latency implications
- Capturing different 3D Data Structures
- Sender, Cloud and Receiver-driven Pipelines
- Distributed Mesh Reconstruction