EECE5698 Networked XR Systems

Lecture Outline for Today

- Limitations of traditional Compression
- Machine Learning based Compression

Codec Chronicles: Decoding the Shift from Classical to Neural Video Codecs

Mallesh Dasari

11 min read · Apr 11, 2022

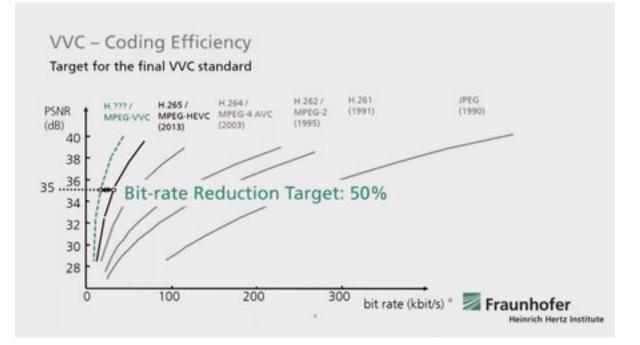
https://mdasari.medium.com/neural-videocodecs-a-paradigm-shift-in-the-internet-videotransmission-d4f97192fd29

A medium blogpost I wrote a few years ago

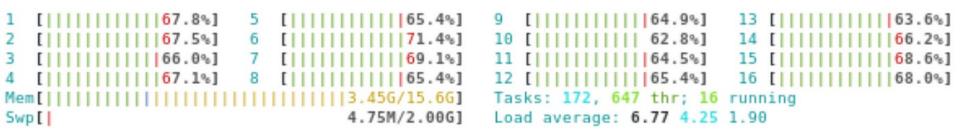
Traditional Compression Algorithms

- Video Compression
 - H.26x series
 - VP series
- Point cloud compression
 - MPEG GPCC, VPCC
- Mesh compression
 - Vertex and connectivity compression methods (e.g., Edgebreaker or TFAN)

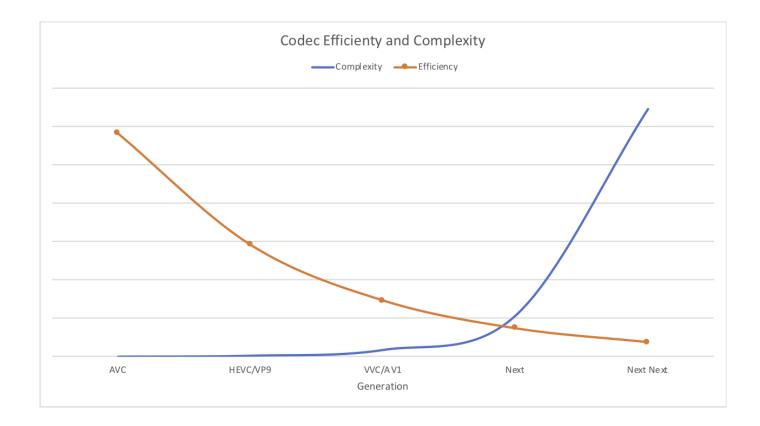
- Reaching a saturation point in compression ratio
 - E.g., 2D video codecs have been engineered for decades



Computational complexity



Computational complexity of H.264 decoding a 8K video in a Chrome browser on an Intel i9–9900K CPU with 3.60GHz and 16 cores. Even with 800% CPU usage, Chrome was not able to render the video.



Credits: David Ronca - Netflix

- Hitting the power wall too
 - Not practical to run software codecs on mobile devices or XR headsets
 - Need to be in Hardware

- Problems with hardware codecs
 - Slower deployment (e.g., H.264 standard was released in 2003, and it is still the most popular codec for many applications)
 - Cross-platform compatibility
 - No control for users

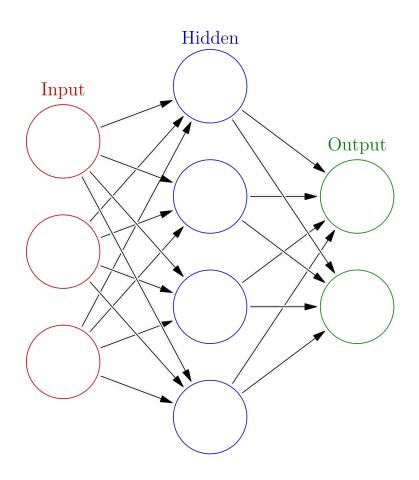
- Handcrafted design of the algorithms difficult & takes time
 - Content unaware or difficult to make the codecs content aware
- Same codec is used across diverse settings
 - E.g., treats a low complexity same as high complex video
 - E.g., no distinction between a low res and a high res video

- Among others
 - Limited coordination with transport protocols
 - Synchronization issues
 - Coarse-grained compression for adaptive streaming scenarios – will be discussed in-depth in streaming lecture

- Fundamental principles
 - Data-driven
 - Neural networks
 - Learn the weights (training a neural network model by passing a lot lot of example data samples)
 - Need large data sets for training and testing
 - Need data parallel accelerators (e.g., GPUs) for practical speeds

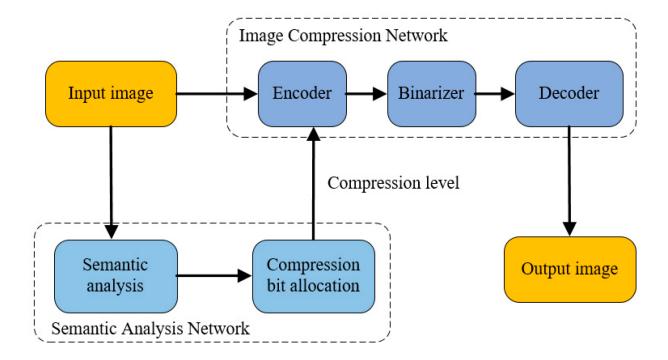
- Benefits
 - Can be software-driven
 - Flexible across different types of content

- Neural Networks
 - Input
 - Weights
 - Neurons
 - Activation Function
 - Output
 - Loss function
 - Change weights based on loss
 - Update weights

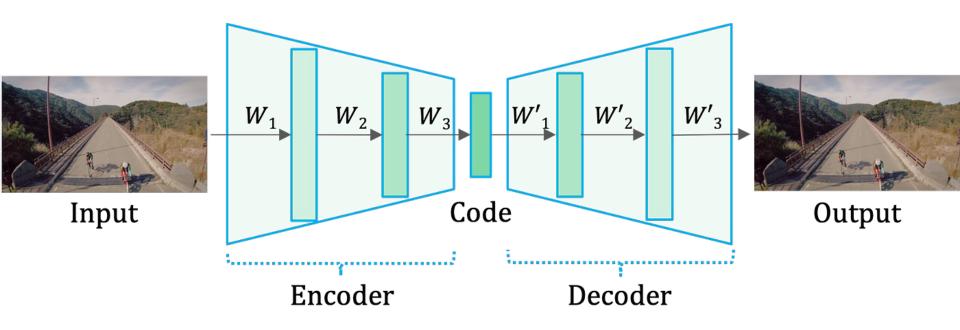


- The concept has been around for decades, but practical methods have become mainstream since 2018
- Popular models used for ML based compression
 - AutoEncoders
 - GANs
 - Diffusion Models
 - Transformers

 Utilize layers of artificial neurons to process data in complex patterns, ideal for capturing nonlinear dependencies in data.

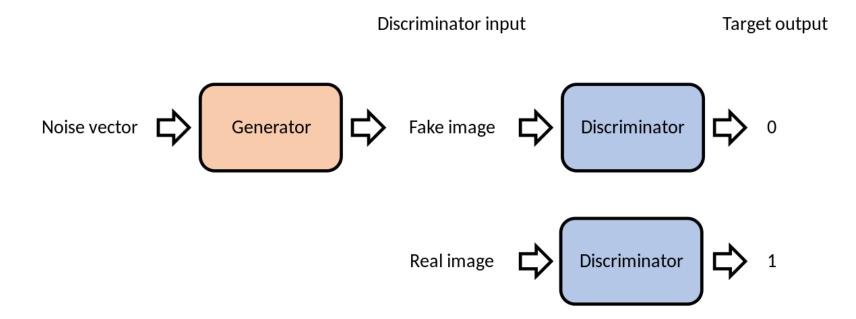


- Auto Encoder
 - Compresses input into a lower-dimensional code and then reconstructs the output from this code

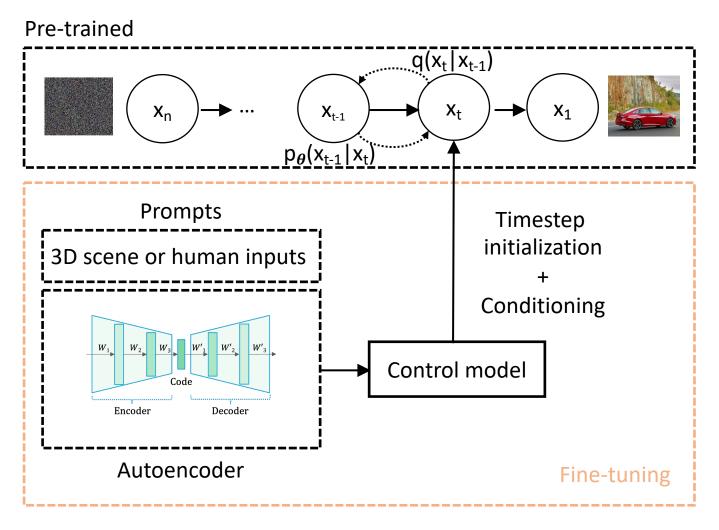


Weights & Latent code vector – the internal logic can be much more complex

- GANs (Generative adversarial networks)
 - Consist of two neural networks, the generator and the discriminator, competing against each other to generate data very similar to the original data, useful for highfidelity compression.



Diffusion Model Based Compression



Transformer Based Compression

- Computational Attention based
 - Computes 'soft' weights that change during run time
 - Attends more towards certain weights i.e., gives more importance to certain regions

Visual Attention

• Semantic or salient features

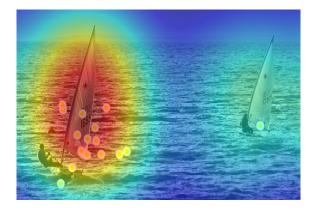
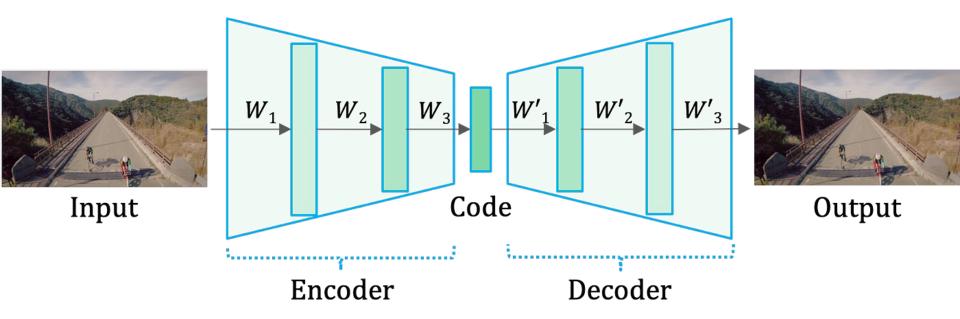
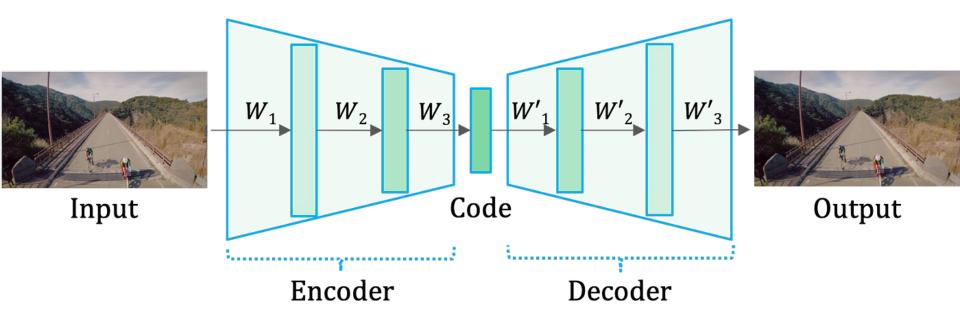


Image Compression



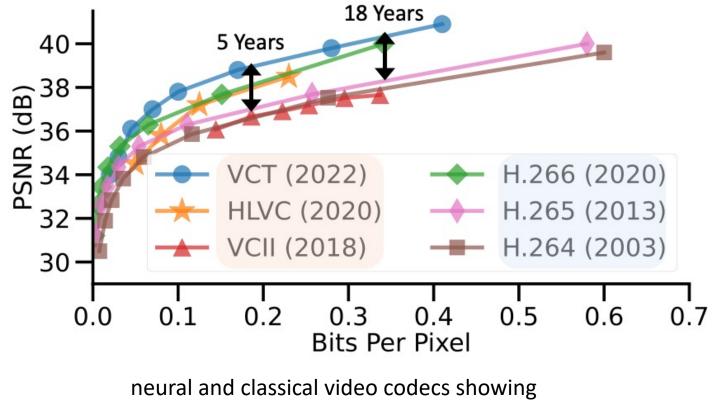
Spatial redundancy – Convolutional neural networks (CNNs)

Video Compression



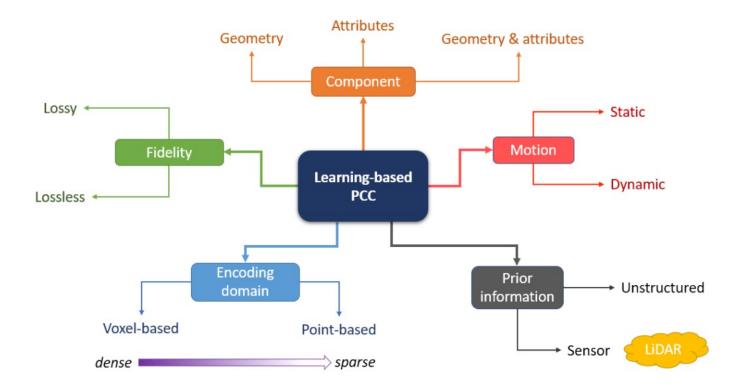
Spatial & Temporal redundancy – 3D CNNs or LSTMs, need to estimate residuals

Evolution of Video Codecs

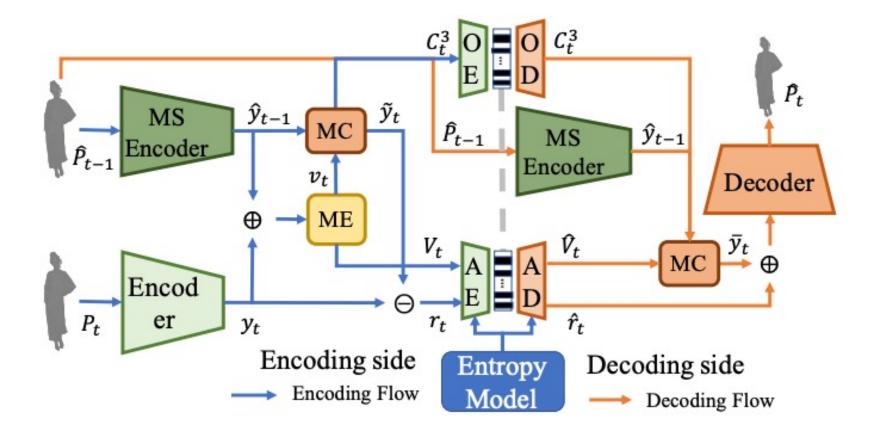


compression efficiency across generations.

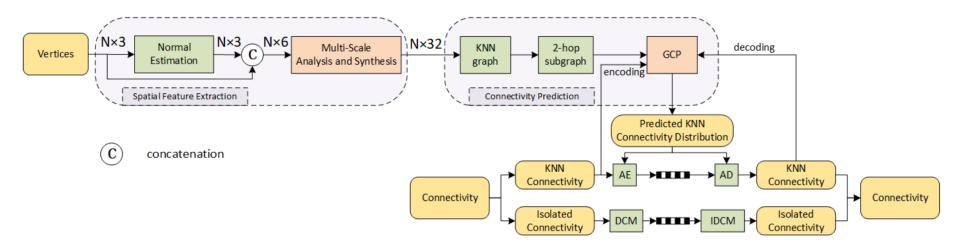
Point Cloud Compression



Point Cloud Compression



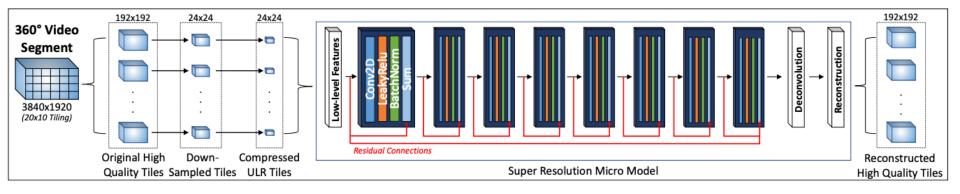
Mesh compression - Connectivity

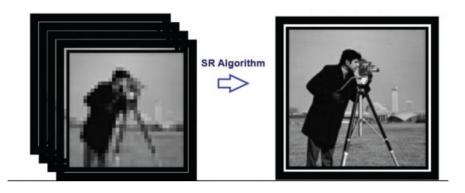


Vertex prediction & Connectivity prediction

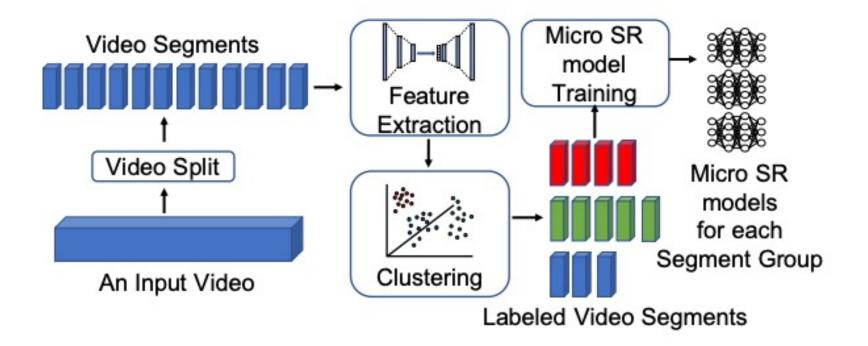
NOSSDAV'23

Super Resolution of Low Res content to High Res





Super Resolution of Low Res content to High Res



Super Resolution of Low Res content to High Res

- Can be applied on traditional compression settings as well
 - E.g., Compress excessively using traditional codec, and use super resolution to enhance the quality after decoding

Performance Metrics

- Quality
 - PSNR
 - SSIM
 - VMAF Netflix
- Compression ratio
- Latency
- Power consumption

Type of Codecs

- Generalized model
 - Train on a large-scale dataset as much data as possible
 - Complex model
- Category-specific model
 - Train on a particular class of dataset e.g., sports or Netflix database
- Video-specific model
 - Model specific to video memorize the conent

Limitations

- Difficult to generalize
 - There is never enough data to train a model
 - We can circumvent this problem in certain scenarios (e.g., when streaming on-demand stored content like Netflix or YouTube)
- Not many devices have GPUs in practice
- High Power consumption

Summary of the Lecture

- Limitations of traditional algorithms
- Advances in ML based compression
- Auto encoders, GANs, Transformers, Attention, Diffusion Models
- Super Resolution
- Performance metrics