EECE5698 Networked XR Systems

Lecture Outline for Today

- Homework2 Discussion
- Streaming Fundamentals
- On-demand Video Streaming
- Live Streaming
- Video Conferencing

Homework2

- Most of the parts easy
- Many of you faced difficulty in texture mapping that's okay – this part is the most difficult part of the homework
- Open3D does not provide an API for that, you have to write your own function.

Networked XR System

Classical networked system pipeline

Networked XR System

Classical networked system pipeline

Modern day pipeline

What is this graph? And what's going on here?

- Bandwidth
 - Wide area, wireless
- Latency
 - Transmission, packet processing, propagation
 - Router bottleneck
- Variability of bandwidth
 - Wide area, wireless
- Synchronization between network and application
 - TCP vs. application traffic control

- Solutions
 - Compression
 - Streaming protocol
 - Improve network throughput
 - Tighter integration of apps with network protocols

 Given these compression principles, what's the best way to compress the content for streaming and/or storage?

• Objective – user quality of experience (QoE)

Objective – user quality of experience (QoE)

Fielder et. al, IEEE TON Mar'2010

Objective – user quality of experience

- Overall Streaming Pipeline
 - Get the video content and compress it
 - Identify the constraints (e.g., Network)
 - Define objective (user QoE)
 - Make download decisions based on the constraints maximizing the objective

- Unicast
 - To one user
- Multi-cast
 - To a group of selected users
- Broadcast
 - To anyone

 Users can stream videos any time they want

 Opportunity to cache or pre-fetch when network conditions are good

<	Quality
	1080p Premium ^{HD} Enhanced bitrate
	1080p ^{HD}
	720p
	480p
	360p
	240p
	144p
~	Auto

Media is stored in different resolutions at the server

Adaptive streaming – DASH (dynamic adaptive streaming of HTTP)

- Quality of experience metrics
- Startup latency
 - Should load the video as quickly as possible
- Re-buffering
 - Buffer should not be empty for playback
- Visual quality
 - More quality the better
- Fluctuations in visual quality
 - Shouldn't change quality too frequently

- Need to support different user actions
 - Pause
 - Forward
 - Rewind
 - Skip or jump to a certain part of the video
- Need to re-buffer all over again

- Storage costs
 - E.g., Netflix stores thousands of different versions <resolutions, file formats, bitrates, ...> for each video
 - Can quickly explode storage costs

- Live (non interactive)
 - Need to support a variety of devices
 - Can afford some delay but not much

- Important factors
 - Scale how many users does the server support?
 - Transcode the video to multiple servers & distribute
 - How long the stream will be?
 - What kind of scenario?
 - Live streaming from a phone?
 - Live streaming at a concert or game?
 - Remote assistance application?

• Recent super bowl live streaming latency numbers

Ş	Super Bowl 2024: Average Lag Behind Real-Time Comparing various streaming sources with the on-field game
NFL⁺	61.45
©CBS fubo [™]	86.75
©CBS ► YouTubeTV	55.54
	70.16
DIRECTVstream	60.62
Paramount+	42.73
ViX	63.46
	olo 10 20 30 40 50 60 70 80 90 SECONDS BEHIND ON-FIELD ACTION

How much can you tolerate?

Source: Phoenix

Devedeep et,al: Sigcomm'19

- Interactive
 - Need to support a variety of devices
 - Low latency

- 1. Peer to peer systems
- Server relay

 Transcodes input
 bitstreams into
 different versions
 live and sends
 them to clients
 based on their
 network
 conditions

- Fewer clients p2p is okay
- Server based is efficient for large number of clients

Client 1 communicates directly with Client 2

Client 1 communicates directly with the Twilio Selective Forwarding Unit (SFU)

- Metrics
 - Latency (e.g., Zoom or Facetime applications have 100s of ms latency)
 - High frame rate, no freezes
 - High quality
- No option for pause, rewind, or jumping to a different parts of the video

Building and Testing Streaming Protocols

- Simulation
 - Model traffic
 - Model network
 - Model compression
 - Build protocol
 - Test and evaluate

NETWORK SIMULATOR

Building and Testing Streaming Protocols

• Emulation – slightly more realistic

Stream videos over realistic network conditions Record & Replay real world network traces

Summary of the Lecture

- Streaming fundamentals
- On-demand video streaming
- Live streaming
- Video conferencing
- Building and testing streaming protocols