EECE5698 Networked XR Systems

Lecture Outline for Today

- Mesh Streaming
- Homework3

Recap: Mesh

- Data representation
 - Each frame has vertices and connectivity
 - Color texture is stored independently, so there is also mapping information from texture to polygons

Challenges in Mesh Streaming

- Low Latency: For interactive live streaming, we expect latencies on the order of 2D video conferencing systems (<100ms).
- Scalable: 3D video quality is often a function of number of cameras and scene size. An ideal capture solution should support dozens of sensors with commodity hardware.
- Adaptive Streaming: The system must operate given practical bitrates for Internet streaming, and the quality of the system should adapt to bandwidth availability.

Mesh Streaming

• Bandwidth and latency are also a function of the scale of the scene captured.

Implications of 3D Representations

Mesh requires significantly less data rate but poses numerous computational challenges

Mesh Capture

Mesh Capture

Centralized Textured Mesh Creation Server

Mesh Capture

Not scalable with #cameras, scene size, and high quality

Root Cause Analysis

Texture Processing

NxN

Texture Processing

< Nx2N

Codec/Bandwidth Efficient Packing

Streaming Texture vs. Mesh Geometry

Texture has more impact on final rendered quality. It should be allocated more bits.

Streaming Texture vs. Mesh Geometry

Rate control Problem

How to split the bandwidth between texture and mesh? How to select optimal coding parameters for both texture & mesh?

Streaming Texture vs. Mesh Geometry

How to split the bandwidth between texture and mesh? How to select optimal coding parameters for both texture & mesh?

Scene Complexity Metric

DCT Energy

$$\mathscr{E}_{dct} = \sum_{i=w}^{j=h} e^{\left[\left(\frac{ij}{wh}\right)^2 - 1\right]} |DCT(i-1, j-1)|$$

where, where w and h are the width and height of each block, and DCT(i, j) is the $(i, j)^{th}$ DCT component when i + j > 2, and 0 otherwise

Distributed Capture Performance

Significantly better quality under lower bitrates

Scalability of Distributed Capture

Not GPU bottlenecked; DRAM is abundant and scalable

The scene is segmented into N objects: 1...N.

 q_i is the perceived quality of of the object i.

the quality q is a function of the texture video bitrate t_r , mesh polygon distortion ratio (m_r) , and the texture mapping distortion (t_d) .

We can model the function q in the following way.

 $q = f(t_r \oplus m_r) - t_d$

where, $f(t_r \oplus m_r)$ is the perceived quality of rendered quality using the texture quality at t_r bitrate, and mesh quality at m_r bitrate.

 $f(t_r \oplus m_r)$ can be computed in the following ways.

- 1. A linear function: $f(t_r \oplus m_r) = t_r + m_r$ 2. A ratio: $f(t_r \oplus m_r) = \frac{t_r + m_r}{max_{t_r} + max_{m_r}}$

3. An index into a table of $t_r + m_r$ estimated through rate distortion curves of t_r and m_r

Given the above quality function for each object in the scene, we can model the overall expected perceptual quality of rendered final scene as

 $E(Q) = \sum_{i=1}^{N} p_i \times r_{i,d} \times q_i$

where p_i is the view probability of object *i*, and $r_{i,d}$ is an integer variable denoting object being downloaded.

If an object is missed i.e., not downloaded, it results in loss of quality. We represent this loss in quality as

 $E(O_m) = \sum_{i=1}^N p_i \times r_{i,m}$

where $r_{i,m}$ is an integer variable denoting object being missed.

Thus, the overall QoE can be modeled as

 $QoE = E(Q) - \sigma E(O_m)$

Our objective is to maximize the above QoE function subject to the following constraints.

Constraints.

The following constraints ensure the feasibility of the solution. The quality of an object can only be positive if the object is downloaded, i.e.,

 $q_i \ge r_{r,d}$

also, every object must be either downloaded or missed.

 $r_{i,d} + r_{i,m} = 1, \forall i = 1...N$

Finally, the downloading must complete before some time δ before the playback time P_t . Let $d(q_i)$ be the download time of object *i* at quality q_i . Then this constraint can be represented as.

 $\sum_{i=1}^{N} d(q_i) \times r_{i,d} + \delta \le P_t$

This represents the bandwidth constraint, which can also be written as follows, $t_r + m_r \leq C$, where *C* is the predicted bandwidth.

Summary of the Lecture

- Mesh streaming
- Distributed Capture
- Adaptation of texture and mesh streams