## EECE5698 Networked XR Systems

### Lecture Outline for Today

- Network Capacity vs. Requirements of Applications
- Compression Fundamentals
- 2D Video Compression

### Today's Internet

- Wired
  - Fiber, Cable
- Wireless
  - Cellular
  - WiFi
  - Satellite

### Internet speeds

- What are the max speeds for today's Internet?
  - Wired
  - Cellular
  - WiFi
  - Satellite

| Internet type  | Max speed            |
|----------------|----------------------|
| Fiber          | 10,000Mbps (5 Gbps)  |
| Cable          | 1,200Mbps (1.2 Gbps) |
| DSL            | 100Mbps              |
| 5G             | 1,000Mbps (1 Gbps)   |
| 4G LTE         | 9-50Mbps             |
| Fixed wireless | 100Mbps              |
| Satellite      | 100Mbps              |

### What are the average speeds?

- Wired = ~1gbps
- WiFi = ~ 100Mbps
- Cellular = ~ 100Mbps
- Depends on the location
  - Campuses, Homes, Urban, Rural, Country (Developed vs. Developing worlds)
  - Many factors

# How much Internet speed you need?

|          |                  | Minimum | Recommended |
|----------|------------------|---------|-------------|
| Email    |                  | 1Mbps   | 1Mbps       |
| Web bro  | owsing           | 3Mbps   | 5Mbps       |
| Social r | nedia            | 3Mbps   | 10Mbps      |
| Stream   | ing SD video     | 3Mbps   | 10Mbps      |
| Stream   | ing HD video     | 5Mbps   | 25Mbps      |
| Stream   | ing 4K video     | 25Mbps  | 100Mbps     |
| Online   | gaming           | 5Mbps   | 100Mbps     |
| Stream   | ing music        | 1Mbps   | 5Mbps       |
| One-on   | -one video calls | 1Mbps   | 25Mbps      |
| Video c  | onference calls  | 2Mbps   | 50Mbps      |

### 2D Video as an Example

- How much bandwidth does a 2D movie needs
  - Example: 2-hour movie, 30 Fps, 8-bit depth, 1080p

- Total = 2x60x60x30x3x1920x1080 Bytes or 1.25TB or 1.4Gbps
- On a home WiFi with say average 150Mbps speed, it takes about 19 hours to download this movie

### 2D Video as an Example

• But you're watching your Netflix movie in real-time



### **Compression Fundamentals**

- Two types of compression methods
  - Lossless
    - No loss of information
  - Lossy
    - There is some information loss.. But perceptually not much
    - Useful in case of poor Internet speeds

### **Compression Fundamentals**

- Key steps involved in video compression pipeline
  - Color space or Chroma sub-sampling



### Chroma Sub-sampling

- RGB 3 channels
  - Gives equal importance to all 3 channels
- YCbCr 3 channels
  - Gives more importance to Luma
  - Less importance to Chroma
  - Perceptually minimal or no loss
- The Y image on the right is essentially a greyscale copy of the main image.



### Chroma Sub-sampling

=

+

3

4

2









### Chroma Sub-sampling



| Y' =    | 16+   | $\frac{65.738 \cdot R'_D}{256} +$  | $\frac{129.057 \cdot G'_D}{256} +$ | $\frac{25.064\cdot B_D'}{256}$  |
|---------|-------|------------------------------------|------------------------------------|---------------------------------|
| $C_B =$ | 128 - | $\frac{37.945\cdot R_D'}{256}-$    | $\frac{74.494\cdot G_D'}{256}+$    | $\frac{112.439\cdot B_D'}{256}$ |
| $C_R =$ | 128 + | $\frac{112.439 \cdot R'_D}{256} -$ | $\frac{94.154\cdot G_D'}{256}-$    | $\frac{18.285\cdot B_D'}{256}$  |

https://en.wikipedia.org/wiki/Chroma\_subsampling

### **Compression Fundamentals**

- Key steps involved in video compression pipeline
  - Color space or Chroma sub-sampling



- Exploiting redundancy in the video content
  - Intra frame prediction
    - Within the frame spatial redundancy
  - Inter frame prediction
    - Across the frames– temporal redundancy



- Intra prediction
  - Since neighboring pixels within an image are often very similar, rather than storing each pixel independently, the frame image is divided into blocks and typically minor difference between each pixel can be encoded using fewer bits.



• Typical Block Sizes or Macroblock sizes



Latest compression algorithms can do up to 64x64 blocks of pixels (for 4K or 8K videos)

Inter Frame Prediction



Frame1



Residual – very little *information* 

Frame2

- Instead of directly encoding the raw pixel values for each block, the encoder will try to find a block similar to the one it is encoding on a previously encoded frame, referred to as a reference frame.
- This process is done by a block matching algorithm.



- If the encoder succeeds on its search, the block could be encoded by a vector, known as motion vector, which points to the position of the matching block at the reference frame.
- The process of motion vector determination is called motion estimation.

#### **Motion vector visualization**



Image credit: Keyi Zhang

Stanford CS348K, Spring 2021

 In most cases the encoder will succeed, but the block found is likely not an exact match to the block it is encoding. This is why the encoder will compute the differences between them. Those residual values are known as the prediction error



Block Matching Algorithm



Mean difference or Mean Absolute Difference (MAD) =  $rac{1}{N^2}\sum_{i=0}^{n-1}\sum_{j=0}^{n-1}|C_{ij}-R_{ij}|$ 

Mean Squared Error (MSE) = 
$$rac{1}{N^2}\sum_{i=0}^{n-1}\sum_{j=0}^{n-1}(C_{ij}-R_{ij})^2$$

- Types of Block Matching Algorithms
  - Exhaustive search
  - A 3-step search
  - Hexagon or Diamond search
  - Computationally very intensive
  - This must be done for each block of pixels for each frame referencing multiple frames



- Three types of frames
  - I standalone frame, refers itself
  - P refers to past frames (I or P)
  - B refers to previous and future frames (P or B)
- Group of pictures (GOP)



### **Compression Fundamentals**

- Key steps involved in video compression pipeline
  - Color space or Chroma sub-sampling



- Transform encoding and quantization
  - Our eyes are bad at perceiving high frequency data
  - Throw away a lot of such data – negligible quality loss







8x8 DCT Transform

64 constants that represents how much of each base image is used

- Transform encoding and quantization
  - Our eyes are bad at perceiving high frequency data
  - Throw away a lot of such data negligible quality loss



Lower numbers

DCT'd image

Quantization table

Compressed image

| 04 | 04 | 06 | 10 | 21 | 21 | 21 | 21 |
|----|----|----|----|----|----|----|----|
| 04 | 05 | 06 | 21 | 21 | 21 | 21 | 21 |
| 06 | 06 | 12 | 21 | 21 | 21 | 21 | 21 |
| 10 | 14 | 21 | 21 | 21 | 21 | 21 | 21 |
| 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 |
| 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 |
| 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 |
| 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 |

Chrominance Quantization Table Higher numbers generate more 0s

| 04 | 03                              | 04 | 04 | 04 | 06 | 11 | 15 |  |
|----|---------------------------------|----|----|----|----|----|----|--|
| 03 | 03                              | 03 | 04 | 05 | 08 | 14 | 19 |  |
| 03 | 04                              | 04 | 05 | 08 | 12 | 16 | 20 |  |
| 04 | 05                              | 06 | 07 | 12 | 14 | 18 | 20 |  |
| 06 | 06                              | 09 | 11 | 14 | 17 | 21 | 23 |  |
| 09 | 12                              | 12 | 18 | 23 | 22 | 25 | 21 |  |
| 11 | 13                              | 15 | 17 | 21 | 23 | 25 | 21 |  |
| 13 | 12                              | 12 | 13 | 16 | 19 | 21 | 21 |  |
|    | Luminance<br>Ouantization Table |    |    |    |    |    |    |  |

Lower numbers results in more accuracy

### Entropy Coding

Zigzag Encoding



### Entropy Coding

- Huffman coding
  - Based on the lengths of assigned codes on the frequency of data (prefix codes)

| Character            | Code           | Frequency | Total Bits                       |  |
|----------------------|----------------|-----------|----------------------------------|--|
| А                    | 000 Length = 3 | 10        | <b>30</b> Frequency x Bit Length |  |
| E                    | 001            | 15        | 45                               |  |
| 1                    | 010            | 12        | 36                               |  |
| S                    | 011            | 3         | 12                               |  |
| т                    | 100            | 4         | 12                               |  |
| Р                    | 101            | 13        | 39                               |  |
| Newline              | 110            | 1         | 3                                |  |
| Total Bits Used: 174 |                |           |                                  |  |

### Entropy coding

#### • Huffman coding





| Char | Code  | Freq | Total<br>Bits |
|------|-------|------|---------------|
| А    | 110   | 10   | 30            |
| E    | 10    | 15   | 30            |
| I    | 00    | 12   | 24            |
| S    | 11111 | 3    | 15            |
| т    | 1110  | 4    | 16            |
| Ρ    | 01    | 13   | 26            |
| \n   | 11110 | 1    | 5             |

### **Compression Artifacts**

8x8 Blocks



Text Caption



### Video Compression History



<sup>© 2015</sup> Avaya Inc. All rights reserved.

### Popular Video Compression Algorithms

- MPEG Standards
  - MPEG H.26x series, H.266 is the most recent one
  - VP series from Google
  - AV1

### Lecture Summary

- Need for Compression
- 2D Compression key steps
  - Chroma sub-sampling
  - Frame prediction
  - Transform coding
  - Entropy coding