
EECE5698
Networked XR Systems



Lecture Outline for Today

• Mesh Compression



Recap: Mesh 

• A set of polygons, connected by 
their common edges or vertices
• Typically represented by triangles

• Meshes are fundamental to 
rendering scenes in video games, 
animations, XR, and more.



Recap: Mesh

• Data representation
• Each frame has vertices and connectivity
• Color texture is stored independently, so there is also 

mapping information from texture to polygons



Why Mesh Compression

• Challenges: Large meshes consume significant 
memory and bandwidth, making storage and 
transmission inefficient.
• Objectives: Compress meshes to reduce file size 

without significantly losing quality, enabling faster 
loading times and lower storage requirements.
• Benefits: Efficient mesh compression improves 

performance in real-time applications and reduces 
costs in data transmission and storage.



Mesh vs. Point Cloud

• Meshes are much more compact

Point cloud

Triangle mesh

Counter Intuitive from the previous slide?



Mesh Compression

• Mesh Simplification – Vertex clustering or quadratic 
error decimation
• Vertex Compression
• Connectivity Compression
• Texture Compression



Mesh Compression
Mesh simplification can be a form of compression



Mesh Compression

• Vertex Compression
• Reduce the size of vertex coordinates while preserving the 

mesh's geometric detail.
• Techniques

• Quantization: Converts floating-point coordinates to a fixed 
number of bits, reducing precision but saving space.

• Predictive Coding: Encodes vertex positions as differences 
from predicted positions based on previous vertices, 
exploiting spatial coherence.

• Example: Using delta encoding, where each vertex 
position is stored as the difference from the previous 
vertex, significantly reducing the range of values.



Mesh Compression

• Vertex Compression
• Reduce the size of vertex coordinates while preserving 

the mesh's geometric detail.

• Techniques:
• Vertices can be considered same as point cloud
• Can we use point cloud compression techniques that 

we discussed in the previous lecture?



Mesh Compression

• Connectivity Compression
• Efficiently encoding the mesh topology, which defines 

how vertices are connected to form faces.

• Techniques – Edgebreaker algorithm
• The algorithm traverses the mesh, encoding its topology 

with a sequence of symbols representing the traversal 
operations.
• Includes symbols like C (connect), L (left), R (right), E 

(end), and S (start), which describe how to move from 
one triangle to the next – CLERS String



Mesh Compression

• Edgebreaker Algorithm
• The algorithm starts at an edge of the mesh and follows 

the edges around the mesh in a systematic way, 
essentially "breaking" the edges as it goes to avoid 
retracing its path. This traversal forms a loop around the 
mesh, visiting each triangle once.

A

B

Step 1: Start at the outer edge of A (S could denote this start, 
but it's optional).
Step 2: Move to triangle B via the shared edge — since B is 
directly connected without requiring a turn, this move is 
encoded as "C" (Connect).
Step 3: From B, there's no new triangle to visit, so the algorithm 
would end — this could be marked with "E" for End, but since 
it's a simple case, the end might be implicit.



Mesh Compression

• Connectivity Compression
• Efficiently encoding the mesh topology, which defines 

how vertices are connected to form faces.

• Techniques – Edgebreaker algorithm
• Achieves at most 4 bits per vertex
• Published in 1996 but popular even today 
• Used in Google’s Draco Mesh compression code 

(https://google.github.io/draco)

https://google.github.io/draco/


Mesh Compression

• Connectivity Compression
• Efficiently encoding the mesh topology, which defines 

how vertices are connected to form faces.

• Techniques – Edgebreaker algorithm
• Limitations: the algorithm assumes a manifold mesh, 

which may limit its applicability to meshes with more 
complex topologies without preprocessing

Definition of manifold mesh: if you were a tiny 
ant walking on the surface of the 3D model, 
you could walk all over the model without ever 
finding a place where the surface doesn't make 
sense — no holes, no edges hanging in the air, 
and no overlapping faces.



Mesh Compression

• Connectivity Compression
• Efficiently encoding the mesh topology, which defines 

how vertices are connected to form faces.

• Techniques
• Edgebreaker – lossy for non-manifold meshes
• TFAN (Triangle fan) algorithm – lossless
• Valence-driven encoding – based on the number of 

connected edges



Mesh Compression

• Texture compression
• How?



Mesh Compression

• Progressive compression
• Different levels of detail are created by simplifying the 

original mesh step by step, usually by vertex decimation 
or edge collapse techniques.



Mesh Compression

• Progressive compression
1. Edge Collapse: In the simplification process, an operation called 

"edge collapse" is frequently used, where an edge between two 
vertices is collapsed into a single vertex, reducing the overall count 
of vertices and faces.

2. Vertex Split: The reverse of edge collapse is "vertex split." To refine 
the mesh, the algorithm splits a vertex into two and recreates the 
original edge and associated faces. The vertex split operation is 
stored as a record of how to refine the mesh from one LOD to the 
next.



Mesh Compression

• So far, we talked about only static meshes... What 
about dynamic meshes? 
• Animated meshes 
• Sequence of mesh frames



Animated Mesh Compression

• Sparse Keyframes: Instead of storing every frame 
of the animation, only keyframes are stored, and 
intermediate frames are interpolated. This greatly 
reduces the amount of data required.
• Interpolation: The in-between frames are 

generated by interpolating the transformations 
(such as position, rotation, and scaling) from 
keyframes. Efficient algorithms ensure that this 
interpolation does not require too much 
computational power.



Compressing a mesh sequence

• Recall intra and inter frame prediction for exploiting 
spatial and temporal redundancy in 2D videos
• Can we apply similar principles?

ChatGPT produced example mesh sequence



Compressing a mesh sequence

• Compress 
displacements instead 
of vertices
• Displacements are 

much smaller values 
and require fewer bits 
compared to vertices

• Key assumption: 
vertex correspondence

INTER-FRAME CODING FOR DYNAMIC MESHES VIA TEMPORALLY-CONSISTENT RE-MESHING, ICIP’23

Previous frame Current frame



Compressing a mesh sequence

• Compress 
displacements instead 
of vertices
• Displacements are 

much smaller values 
and require fewer bits 
compared to vertices

• Key assumption: 
vertex correspondence

INTER-FRAME CODING FOR DYNAMIC MESHES VIA TEMPORALLY-CONSISTENT RE-MESHING, ICIP’23

Final Step: Entropy Coding

Previous frame Current frame



Compressing a mesh sequence

• Topology changes in practice (also called as time 
varying mesh)

Frame	1 Frame	2



Compressing a mesh sequence

Topology	matching	with	subdivision

Frame	1 Frame	2 Frame	2’

Motion	estimation



Compressing a mesh sequence

• Extract key points from each mesh
• Establish correspondences
• Apply non-rigid transformation

Open3D



Compressing a mesh sequence

• Challenges
• Not easy to get a useful reference mesh always – due to 

self contact or addition or deletion of geometry across 
time

• Still an active area of research – no open source or 
very well adopted techniques yet



Compressing a mesh sequence

• Small-scale vs. Large scale mesh sequences
• Large meshes often tend to be static most of the 

regions
• Divide the mesh into patches
• Check if the patch is static, if so, don’t store, just store a 

motion vector (note even in static cases topology can 
change but since we “know” it’s a static region it’s okay 
use the lossy reference)
• If not static, need to store
• Question: how to detect if it’s static or moving?



Compressing mesh and texture 
together
• We care about the final rendered image quality – 

so we need to optimize a function that compresses 
both mesh texture and mesh together 
• Need to effectively allocate bits for mesh and texture



Compressing mesh and texture 
together
• We care about the final rendered image quality – 

so we need to optimize a function that compresses 
both mesh texture and mesh together 
• Need to effectively allocate bits for mesh and texture

Original	texture	
Original	mesh

Original	texture	
Low-res	mesh

Low-res	texture	
Original	mesh

164MB

8.2MB

8.2MB



Mesh Compression

• This lecture has focused mainly on compression 
efficiency
• Almost all of the algorithms are computationally very 

expensive
• None of the dynamic or time varying methods can run in 

real-time – so only suitable for offline stored 
applications



Summary of the Lecture

• Mesh compression
• Vertex, connectivity, texture compression
• Static
• Dynamic or time varying
• Progressive 

Next up: multi-view compression


