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Lecture Outline for Today

* Limitations of traditional Compression
* Machine Learning based Compression



Codec Chronicles: Decoding the
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Codecs
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A medium blogpost | wrote a few years ago
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Traditional Compression
Algorithms

* Video Compression
* H.26x series
* VP series

* Point cloud compression
* MPEG GPCC, VPCC

* Mesh compression

* Vertex and connectivity compression methods (e.g.,
Edgebreaker or TFAN)



Limitations of Traditional
Compression Algorithms

* Reaching a saturation point in compression ratio
* E.g., 2D video codecs have been engineered for decades
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Limitations of Traditional
Compression Algorithms

 Computational complexity
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Computational complexity of H.264 decoding a 8K video in a Chrome browser
on an Intel i9—9900K CPU with 3.60GHz and 16 cores. Even with 800% CPU

usage, Chrome was not able to render the video.



Limitations of Traditional
Compression Algorithms

Codec Efficienty and Complexity

—COmplexity === Efficiency
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Credits: David Ronca - Netflix



Limitations of Traditional
Compression Algorithms

* Hitting the power wall too

* Not practical to run software codecs on mobile devices
or XR headsets

* Need to be in Hardware



Limitations of Traditional
Compression Algorithms

* Problems with hardware codecs

* Slower deployment (e.g., H.264 standard was released in
2003, and it is still the most popular codec for many
applications)

* Cross-platform compatibility
 No control for users



Limitations of Traditional
Compression Algorithms

* Handcrafted design of the algorithms — difficult &

takes time
 Content unaware or difficult to make the codecs content

dware

 Same codec is used across diverse settings
e E.g., treats a low complexity same as high complex video
* E.g., no distinction between a low res and a high res
video



Limitations of Traditional
Compression Algorithms

* Among others
* Limited coordination with transport protocols
* Synchronization issues

e Coarse-grained compression for adaptive streaming
scenarios — will be discussed in-depth in streaming

lecture



ML Based Compression

* Fundamental principles
Data-driven
Neural networks

Learn the weights (training a neural network model by
passing a lot lot of example data samples)

Need large data sets for training and testing

Need data parallel accelerators (e.g., GPUs) for practical
speeds



ML Based Compression

* Benefits
e Can be software-driven
* Flexible across different types of content



ML Based Compression

* Neural Networks
* Input
* Weights
* Neurons
* Activation Function
* Output
* Loss function

* Change weights based
on loss

e Update weights




ML Based Compression

* The concept has been around for decades, but
practical methods have become mainstream since
2018

* Popular models used for ML based compression
* AutoEncoders
* GANs
* Diffusion Models
* Transformers



ML Based Compression

 Utilize layers of artificial neurons to process data in
complex patterns, ideal for capturing nonlinear
dependencies in data.
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ML Based Compression

e Auto Encoder

* Compresses input into a lower-dimensional code and
then reconstructs the output from this code

.......................................

Encoder Decéder

Weights & Latent code vector — the internal logic can be much more complex



ML Based Compression

* GANs (Generative adversarial networks)

* Consist of two neural networks, the generator and the
discriminator, competing against each other to generate
data very similar to the original data, useful for high-
fidelity compression.

Discriminator input Target output

Noise vector |$ [ Generator ] ¢ Fake image |:> [ Discriminator ] |$ 0

Real image |:>[ DiscriminatorJ I:> 1




Diffusion Model Based
Compression

Pre trained

T loN

I 3D scene or human inputs

Autoencoder

Timestep
initialization
+
Conditioning

Control model




Transformer Based Compression

 Computational Attention based
* Computes ‘soft” weights that change during run time

e Attends more towards certain weights i.e., gives more
importance to certain regions



Visual Attention

 Semantic or salient features




Image Compression

Encoder

Spatial redundancy — Convolutional neural networks (CNNs)



Video Compression

.......................................

Encoder Decéder

Spatial & Temporal redundancy — 3D CNNs or LSTMs, need to estimate residuals



Evolution of Video Codecs
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Point Cloud Compression
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Point Cloud Compression
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Mesh compression - Connectivity
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Super Reso
content to

ution of Low Res
High Res

360° Video
Segment
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Super Resolution of Low Res
content to High Res

* (Can be applied on traditional compression settings
as well
* E.g., Compress excessively using traditional
codec, and use super resolution to enhance the
quality after decoding



Performance Metrics

e Quality
* PSNR
 SSIM
 VMAF - Netflix

* Compression ratio
* Latency
* Power consumption



Type of Codecs

* Generalized model
* Train on a large-scale dataset — as much data as possible
 Complex model

e Category-specific model

* Train on a particular class of dataset e.g., sports or
Netflix database

* VVideo-specific model
* Model specific to video — memorize the conent



Limitations

e Difficult to generalize
* There is never enough data to train a model

* We can circumvent this problem in certain scenarios
(e.g., when streaming on-demand stored content like
Netflix or YouTube)

* Not many devices have GPUs in practice
* High Power consumption



Summary of the Lecture

* Limitations of traditional algorithms
* Advances in ML based compression

e Auto encoders, GANs, Transformers, Attention,
Diffusion Models

e Super Resolution
* Performance metrics

Next up: multi-view compression



