FECES5698
Networked XR Systems

Lecture Outline for Today

* Rendering Basics
* Edge Rendering

Rendering Basics

» Wiki definition: “Rendering or image synthesis is
the process of generating a photorealistic or
non-photorealistic image from a 2D or 3D
model by means of a computer program. ”

Rendering Basics

* Rendering is crucial in various fields such as video
games, simulations, movie production, and virtual
reality, providing the final appearance of models
and scenes with textures, colors, and lighting.

* Key Components:

 Models: The geometric data representing 3D objects.

e Textures: The surface details that give materials their
appearance.

* Lighting: The simulation of light to create shadows,
highlights, and color variations.

Rendering Basics

* Real-time Rendering:

* Used in video games and interactive graphics where images must be
generated at a rapid pace, typically 30 to 60 frames per second.

* Prioritizes speed over image quality, employing various optimizations
to achieve smooth performance.
e Offline (Pre-rendered) Rendering:

* Utilized in situations where image quality is paramount, such as in
feature films and high-quality animations.

* Takes more time to produce a single frame but achieves higher levels
of detail and lighting accuracy.

* Ray Tracing vs. Rasterization:

* Ray Tracing: Simulates the physical behavior of light to produce more
realistic images, calculating reflections, refractions, and shadows.

* Rasterization: Converts 3D models into 2D images oluickl_y, often used
in real-time rendering, but less capable of complex light interactions
compared to ray tracing.

Rendering Basics

High level

Scene / Models

3D Graphics Tool(s)

Rendering Basics

Hardware view

Geometry

Texture Maps

Rendering Basics

* Rendering pipeline

Rendering Basics — Key Steps

1.Model Loading: Importing 3D models into the
rendering engine.

2.Scene Setup: Positioning models, lights, and cameras
within the scene.

3.Geometry Processing: Transforming 3D coordinates to
2D screen space.

4.Rasterization: Converting 3D models into pixels on a 2D
surface.

5.Shading: Applying textures, colors, and lighting effects.

6.0utput: Rendering the final image for display or
storage.

Rendering Basics

e Application processing

= Ru n S O n C P U 007/ / N Geometry o Pixel
. . i / Application Processing Rasterization Processing
— Animation —

— Collision Detection S

{

— Physics
« Package Rendering Primitives
« Copy Textures
« Compile and load Shader programs

}

Vertex Fragment Textures
Shader Shader

L Geometry L Pixel
Application . Rasterization :
Processing Processing

Rendering Basics

xtures / UV Maps
rometry

GL_POINTS GL_LINES

L NN

GL_LINE_STRIP GL_LINE_LOOP

AVAVARR VA A

GL_TRIANGLES GL_TRIANGLE_STRIP

WAVANRVAVAN

Rendering Basics

Geometry Processing

« Per-Triangle and Per-Vertex Ops
- Vertex Shader (and others)
— Coordinate Transform
— Clipping
— Screen Mapping

Rendering Basics

)
-
o
)
Q
O
O
—
o
c
O
)
(©
N
fw
Q
=)
()]
(T
a'd

* Not Programmable
« Creates “Fragments

for shapes

n

(more than a pixel)

Fragment

HEEENEEEEEEEE
HEESNEEEEEEEE
EEENNEEEEEEE
EEEEEEENEEEE

Rendering Basics

Pixel Processing

« Responsible for coloring pixels

No Shading Diffuse Shading

Rendering Basics

The Rendering Equation (simple)

L(w,) = Li(w;) cost; f(w;, ®,) dw,
Q)

Cem Yuksel, Utah:

Rendering Basics

* Lighting and Shadows
. nghtlng Types:
Ambient: Soft, directionless light that simulates indirect
lighting.
* Directional: Parallel light rays, mimicking sunlight.

* Point: Light emitted from a single point, radiating in all
directions.

e Spot: Light emitted in a cone shape, like a flashlight.
e Shadows: Essential for depth and realism, with

techniques like shadow mapping and ray-traced
shadows to simulate how objects block light.

Rendering Basics

Z-buffer representation

—
=
A simple three-dimensional scene

Rendering Basics

e Shaders and the GPU

e Shaders: Small programs that run on the GPU to perform
custom rendering effects, such as lighting calculations,
texturing, and color adjustments.

* Types of Shaders: Vertex shaders, Fragment (or Pixel)
shaders, Geometry shaders, etc.

* GPU’s Role: Executes shaders to render images quickly,
efficiently handling complex calculations required for
realistic rendering.

Rendering Basics

* Vertex Shaders

* Purpose: Vertex shaders process individual vertices of a 3D
model. They handle the transformation and lighting
calculations needed to project the 3D coordinates of
vertices onto the 2D screen space.

* Functionality:

* Apply transformations like translation, rotation, and scaling to
vertices.

* Adjust lighting properties based on the vertex position in the
scene.

e Pass per-vertex data (like position, normal, and texture
coordinates) to the next stages in the pipeline, often including the
fragment shader.

* Operation Level: Operate on each vertex in the model's
geometry, executing once per vertex.

Rendering Basics

* Purpose: Fragment shaders, also known as pixel shaders,
operate on fragments, which are potential pixels on the
screen. They determine the final color and other attributes
of each pixel, including texturing and lighting effects.

* Functionality:

* Calculate the color of each pixel based on textures, lighting, and
the material properties.

* Implement detailed surface effects like glossiness, roughness, and
ambient occlusion.

* Often used for complex visual effects like bump mapping, specular
highlights, and shadow computation.

* Operation Level: Execute once per fragment, which can be
more frequent than per-vertex due to the rasterization
process producing multiple fragments for each vertex,
especially when rendering detailed or close-up views.

Rendering Basics

GPU Memory SrZZZi:r:é ProT::sling
(loaded by CPU)

#version 300 es d

// Input vertex data

// Output to the fragment shader. #version 300 es

precision mediump float; // Required for specifying the

// Uniform rotation matrix // precision in the fragment shader

uniform mat4 rotationMatrix;

// Input data from the vertex shader

I

void main () {

// Rotate the vertex position

vecd4d rotatedPosition = rotationMatrix *
vec4 (vertexPosition modelspace, 1.0);

// Output data
out vecd color;

void main () {
// We simply set the color of the pixel.
or = vec4 (fragmentColor, 1.0);

Position = rotatedPosition;

// Set the color to blue
// for simplicity.

Rendering Basics

* Post-processing effects: Techniques applied to the
rendered image before final output to enhance
visual quality or achieve specific artistic styles.

e Common Effects:

* Bloom: Simulates light bleeding around bright areas.

* Motion Blur: Blurs objects based on movement, adding
realism or speed sensation.

* Depth of Field: Blurs parts of the scene not in focus,
mimicking camera lens effects.

* Color Grading: Adjusts the color palette to convey mood
or time of day.

Rendering Basics

* Post-processing effects

Real-time Rendering

* RTX 4090

Optical Flow Accelerator

Raster Engine
TPC TPC TPC TPC

Il .
Y] M M

L
°
5
5
o

Mem

ory Controller

e

SM
TPC TPC TPC
Raster Engine

SM
TPC

Raster E

PCI Express 4.0 Host Interface

NVENC

TPC TPC

SM
TPC

ngine

NVENC

Raster Eng
TPC TPC T I T TPC TPC TPC
SM SM 5 S| SM SM SM

M SM
TPC TPC

Raster Engine

TPC
SM

Kiowspw

8

Juog Aiowapy

o))

Ciowapy

a8

o13u0g Asowap || Jenosjuog Aiowaen

Real-time Rendering

* RTX 4090

‘nmm

e AN

v TN
TR
T

|
A
X

Real-time Rendering

* RTX 4090

Summary of the Lecture

* Rendering Basics
* Types of rendering
* Rendering pipeline
* Real-time rendering

Next up: Hybrid Rendering

