
Swift: Adaptive Video Streaming with Layered Neural Codecs
Mallesham Dasari, Kumara Kahatapitiya, Samir R. Das, Aruna Balasubramanian, Dimitris Samaras

Stony Brook University

Abstract
Layered video coding compresses video segments into layers
(additional code bits). Decoding with each additional layer
improves video quality incrementally. This approach has po-
tential for very fine-grained rate adaptation. However, layered
coding has not seen much success in practice because of its
cross-layer compression overheads and decoding latencies.
We take a fresh new approach to layered video coding by ex-
ploiting recent advances in video coding using deep learning
techniques. We develop Swift, an adaptive video streaming
system that includes i) a layered encoder that learns to encode
a video frame into layered codes by purely encoding residu-
als from previous layers without introducing any cross-layer
compression overheads, ii) a decoder that can fuse together a
subset of these codes (based on availability) and decode them
all in one go, and, iii) an adaptive bit rate (ABR) protocol
that synergistically adapts video quality based on available
network and client-side compute capacity. Swift can be in-
tegrated easily in the current streaming ecosystem without
any change to network protocols and applications by simply
replacing the current codecs with the proposed layered neural
video codec when appropriate GPU or similar accelerator
functionality is available on the client side. Extensive evalu-
ations reveal Swift’s multi-dimensional benefits over prior
video streaming systems.

1 Introduction

Internet video delivery often encounters highly variable
and unpredictable network conditions. Despite various ad-
vances made, delivering the highest possible video qual-
ity continues to be a challenging problem due to this un-
certainty. The problem is more acute in wireless networks
as the channel conditions and mobility adds to the uncer-
tainty [39, 46]. Interestingly, the next generation wireless net-
works may even make the problem more challenging (e.g.,
60GHz/mmWave [10, 11, 38]).

To counter the challenges posed by such varying network
capacity, current video delivery solutions predominantly prac-
tice adaptive streaming (e.g., DASH [50]), where a source
video is split into segments that are encoded at the server into
multiple bitrates providing different video qualities, and a
client runs an adaptive bitrate (ABR) algorithm to dynami-
cally select the highest quality that fits within the estimated
network capacity for the next segment to be downloaded.
Need for layered coding. Most of the current commercial
ABR algorithms adopt a monolithic encoding practice (e.g.,

Video segment numbers

1 2 N... 1 2 N…

Layer_1

Layer_2

Layer_L

..

Rate_1 (360p)

Rate_2 (480p)

Rate_M (4K)

480p

4K/8K

Layered Coding Regular Coding

Video segment numbers

..

(c
0
)

(c
1
)

(c
L
)

(c
0
+ c

1
)

(c
0
+ c

1
+..+c

L
)

360p (c
0
) Q

1

Q
2

Q
M

..

Quality

Level

Figure 1: Layered vs. Regular coding methods. In Regular
coding the video segments are coded independently at dif-
ferent qualities. In Layered coding a given quality can be
reconstructed by combining codes for multiple layers thus
facilitating incremental upgrades or downgrades.

H.265 [53]), where the same video segment is encoded ‘in-
dependently’ for each quality level. The decision on fetching
a segment at a certain quality is considered final once the
ABR algorithm makes a determination based on estimating
the network capacity. However, these estimations are far from
accurate, resulting in either underutilizing or overshooting the
network capacity. For example, the ABR algorithm may fetch
at a low quality by underestimating the network capacity, or
it may fetch at a high quality causing video stalls by overesti-
mating. Consequently, even the optimal ABR algorithms fail
to provide a good quality of experience (QoE), as such rigid
methods that do not fit the need of the streaming conditions.

An alternate technique, called layered coding, has been
long studied [12, 14, 36, 47, 67] that can avoid the above
streaming issues. The key idea here is that, instead of in-
dependently encoding the segment in different qualities, the
segment is now encoded into layers; the base layer provides
a certain video quality, and additional layers improve the
video quality when applied over the base layer. See Figure 1.
This means that, if the network throughput improves, one can
fetch additional layers to improve video quality at a much
lower cost compared to a regular codec.1 We use the term
regular coding to indicate the current practice of indepen-
dent encoding in multiple qualities (current standards such as
H.265/HEVC [53]).
Challenges with layered coding. Layered coding, however,
faces two nontrivial challenges: compression overhead, and
coding latency. The compression overhead mainly comes
from not having the inter-layer frame prediction to avoid re-
construction drift in quality [29,42,61,67]. On the other hand,
the decoding latency is a function of the number of layers as

1We use terms coding or codec for encoding and decoding together.
Also we use the terms encoding/compression, decoding/decompression inter-
changeably.

each layer needs to be decoded separately. Notwithstanding
these issues, some studies have indeed applied layered coding
in streaming and have shown slightly better QoE compared
to the regular coding methods, benefiting from its ability to
do dynamic quality upgrades [31]. However, they do not ad-
dress either the overhead or the latency issues directly. Indus-
try streaming solutions continue to adopt the regular codecs,
shipping these codecs in hardware to avoid computational
challenges, making it harder to adopt new innovations.
Neural video codecs. A learning approach to video coding
has shown tremendous improvement in compression effi-
ciency in just a few years [43,60,65]. Figure 2 shows bits-per-
pixel vs PSNR plots2 for several generations of codecs of two
types – neural codecs that use deep learning and traditional
algorithmic codecs that use the popular H.26x standards. It
took algorithmic codecs 18 years to make the same progress
that neural codecs achieved in the last 4 years! One reason
for this rapid development is that neural codecs can run in
software that can be integrated as part of the application, sup-
port agile codec development and provide royalty-free codecs.
Further, they run on data parallel platforms such as GPUs that
are increasingly available and powerful.

There are several insights in using neural codecs for video
coding – 1) unlike the traditional layered coding methods
where it is nontrivial to handcraft each layer3 to have unique
information, a neural network’s loss function can be optimized
to encode a video frame into unique layered codes by purely
encoding residuals from previous layers without introducing
a reconstruction drift; 2) a neural network can be trained to
accept a subset of the layered codes and decode all of them in
a single-shot, which again was traditionally difficult to do with
a handcrafted algorithm due to nonlinear relationships among
the codes. Additionally, 3) neural codecs enable software-
driven coding. We note here that GPUs or similar accelerators
for neural network computation are critical for success with
neural codecs. Fortunately, they are increasingly common in
modern devices.
Swift. Based on the above insights, we present Swift, a novel
video streaming system using layered coding built on the
principles of neural video codecs [32, 60, 65].4 We show that
learning can address the challenges of layered coding men-
tioned earlier – there is no additional compression overhead
with further layering and the decoding latency is independent
of the number of layers. Swift consists of three design com-
ponents: i) server-side encoder plus decoder, ii) client-side
decoder, and iii) ABR protocol adapted to layered coding and
varying compute capacity (in addition to varying network
capacity).

2Bits-per-pixel captures compression efficiency and PSNR (peak signal-
to-noise ratio) captures image quality. Both metrics together capture codec
performance.

3Throughout the paper, the term ‘layer’ refers to compressed code layers,
not neural network layers.

4The source code of Swift is available at the following site:
https://github.com/VideoForage/swift.

4 Years

18 Years

Neural Codecs Algorithmic Codecs

Figure 2: Evolution of neural and algorithmic video codecs
showing compression efficiency plots across generations.

We evaluate Swift with diverse video content and FCC-
released real-world network traces [8]. We compare Swift
with state-the-art streaming algorithms that combine either
regular coding [35,51,52] or layered coding [31] with state-of-
the-art ABR algorithms. In terms of QoE, Swift outperforms
the next-best streaming alternative by 45%. It does so using
16% less bandwidth and has a lower reaction time to changing
network conditions. In terms of the neural codec, Swift’s
layered coding outperforms the state-of-the-art layered codec
(SHVC [12]) by 58% in terms of compression ratio, and by
×4 (for six layers) in terms of decoding latency. In summary,
our contributions are the following:

• We show how deep learning-based coding can make layered
coding both practical and high-performing, while address-
ing existing challenges that stymied the interest in layered
coding.

• We design and build Swift to demonstrate a practical lay-
ered coding based video streaming system. Swift is an
embodiment of deep learning-based encoding and decoding
methods along with a purpose-built ABR protocol.

• We comprehensively evaluate and showcase the multi-
dimensional benefits of Swift in terms of QoE, bandwidth
usage, reaction times and compression efficiency.

2 Motivation

2.1 Limitations of Today’s Video Streaming
Due to Regular Coding

Today’s video providers predominantly use source rate adap-
tation (e.g., MPEG-DASH [50]) where video segments are
encoded at different qualities on the server and an adaptive
bitrate (ABR) algorithm chooses the best quality segment to
be downloaded based on the network capacity.

The streaming solutions that are widely deployed, use reg-
ular, standards-driven, algorithmic coding methods such as
H.265/HEVC [53] or VP9 [4] for encoding video segments.
These coding methods do not allow segments to be upgraded
or downgraded based on network conditions.

Figure 3 illustrates this problem using an example experi-
ment (more details about methodology are described in §6.1).
The figure shows the quality of segments that are fetched
by different state-of-the-art ABR algorithms that use regular

75sec

50sec

Slow

Reaction

(a) Most ABR algorithms (BOLA, Penseive) cannot upgrade the
quality of a video segment once downloaded and are slow to react
to changing network conditions.

75sec

Fast

Reaction
25sec

Bandwidth

wasteDiscarded

low quality segments

Refilled

high quality

segments

(b) BOLA-FS does allow video quality to be upgraded by re-
downloading a higher quality segment. However, the previously
downloaded segment is wasted.

Figure 3: Limitations of today’s ABR algorithms because
of regular coding: either slower reaction to network condi-
tions or bandwidth wastage to achieve faster reaction time to
highest quality. The reaction latency includes time to notice
throughput increase as well as playing the buffered segments,
and hence segment duration (5 sec here) plays a role. Penseive
aggressively controls video quality fluctuations to compen-
sate for incorrect bandwidth prediction, and hence the sudden
jump in quality compared to BOLA.

coding. During the experiment, the throughput improves dras-
tically at the 100 second mark. Two state-of-the-art streaming
algorithms, Pensieve [35] and BOLA [52], cannot upgrade
the quality of a segment once the segment has been down-
loaded. This causes a slow reaction to adjust to the improved
throughput. In Figure 3(b) however, BOLA-FS [51], a ver-
sion of BOLA, does allow the higher quality segment to be
re-downloaded when the network conditions improve. How-
ever, the previously downloaded lower quality segment is
discarded, resulting in wasted bandwidth.

2.2 Layered Coding

A more suitable coding method to address the above issues is
layered coding, where a video segment is encoded into a base
layer (providing the lowest playback quality level) and multi-
ple enhancement layers as shown in Figure 1. Clearly, layered
coding gives much finer control on rate adaptation compared
to regular coding. For example, multiple enhancement layers
for the same segment can be fetched incrementally as the esti-

2.5-fold

Bitrate Overhead

Figure 4: Compression efficiency of traditional layered coding.
We use H.265 [53] and its layered extension SHVC [12] to
encode the videos (described in §6.1). The single layer bitrate
curve is same for both, and the additional layers are for SHVC.
As shown, SHVC requires 2.5× more bits for 4 layers of
SHVC compared to a single layer for the same quality.

mate of the network capacity improves closer to the playback
time, which is not possible in case of regular coding.

2.3 Challenges of Adopting Traditional
Layered Coding in Video Streaming

Layered coding has typically been developed and imple-
mented as an extension to a regular coding technique. Pub-
lished standards demonstrate this dependency: SHVC [12]
has been developed as an extension of H.265 [53], similarly,
older SVC [47] as an extension for H.264 [57]. Developing
layered coding as an extension on top of a regular coding
introduces multiple challenges in real-life deployments:

1) Cross-layer compression overhead: The key to large com-
pression benefits in current generation video coding standards
(e.g., ≈ 2000× compression ratio for H.265 [53]) is inter-
frame prediction – the consecutive frames are similar and so
it is efficient to simply encode the difference between consec-
utive frames. However, using the inter-layer frame prediction
across enhancement layers of the current frame with respect
to the previous frame makes video quality drift during de-
coding [29, 42, 61, 67]. To minimize or avoid the drift, most
of the layered coding methods do not use inter-frame pre-
diction across layers and thus lose out on its compression
benefits [11, 17, 31]. In effect, to achieve the same quality,
layered coding (e.g., SHVC) requires significantly more bits
compared to its regular counterpart (e.g., H.265). In our study,
we find that a 4-layer SHVC coding method needs 2.5× bits
per pixel compared to its regular coding counterpart, H.265
(see Figure 4).

2) High encoding and decoding latency: The computational
complexity of these algorithmic codecs mainly comes from
the motion estimation process during inter-frame predic-
tion [53, 57]. During the motion estimation, it is useful - for
each pixel - to encode its motion vector, i.e., where its relative
location was in the previous frame. The motion vectors are
computed for each frame by dividing the frame into thou-
sands of blocks of pixels and searching a similar block in the
previous frames. In general, the codecs use a set of previous

frames to search blocks in each frame making it computation-
ally expensive. The process becomes even more complex in
case of layered coding because each layer has to be decoded
one after the other because of the dependency of a layer on the
previous one (to exploit the content redundancy) [11, 27, 30].
This serial process of layered coding makes the latency to
be a function of number of layers, and therefore the latency
increases progressively as we increase the number of layers.

1 2 3 4 5
Number of Layers

0

50

100
De

co
di

ng
 L

at
en

cy
 (m

s)
SHVC
x265

Figure 5: Latency challenges
of traditional layered coding.
The decoder is run on a high-
end Desktop (as described in
§5) using a single-threaded im-
plementation of SHVC [3].

Figure 5 shows per-frame
decoding latency of the
state-of-the-art layered cod-
ing (i.e., SHVC) of a 1-min
video on a desktop with con-
figuration described in §6.1.
As shown, it takes more than
100ms to decode each frame
for 5 layers, an order of mag-
nitude increase in coding la-
tency compared to its reg-
ular counterpart H.265 (an
x265 [7] implementation).
Despite several optimizations in the past, such range of la-
tencies makes it infeasible to realize real-time decoding on
heterogeneous platforms. Recent studies (e.g., Jigsaw [11])
tackle this challenge by proposing a lightweight layered cod-
ing method (using GPU implementation), but the latency is
still a function of number of layers.

Because of these challenges, traditional layered coding
is not used in practice today. In this work, rather than ap-
proaching this problem with yet another extension, we seek
to explore layered coding via a clean-slate, learning-based
approach with a goal towards efficient layered compression
by embracing the opportunities of new hardware capabilities
(e.g., GPUs and other data parallel accelerators).

2.4 Layered Coding using Neural Codecs

Video compression has recently experienced a paradigm
shift in the computer vision community due to new ad-
vances in deep learning [32, 43, 60, 65]. The compres-
sion/decompression here is achieved using neural networks
that we refer to as neural video codecs.

The basic idea is the use of an AutoEncoder (AE), a neural
network architecture used to learn efficient encodings that has
long been used for dimentionality reduction purposes [20].
The AE consists of an encoder and a decoder. The encoder
converts an input video to a code vector that has a lower
dimension than the input size, and the decoder reconstructs
(perhaps with a small error) the original input video from
the low-dimension code vector. The neural network weight
parameters (Wi for encoder and W ′

i for decoder) are trained
by minimizing the reconstruction error, that is, minimizing
the difference between the input and the output of the decoder.
The smaller the code, the larger the compression factor but

_ _ _ _
Original Image

MS-SSIM=1.0 MS-SSIM=0.90 MS-SSIM=0.94 MS-SSIM=0.97 MS-SSIM=0.99

r
0 r

1
r
2 r

3

High information loss Low information loss

Figure 6: Illustrating the residuals (r0, . . . ,r3) from an orig-
inal frame to a series of compressed-then-decoded frames.
MS-SSIM [56] is a perceptual measure of image quality. A
highly compressed frame (lowest MS-SSIM) has more resid-
ual information (r0).

higher the reconstruction error.
Our insight in using Autonencoders is that a their loss func-

tion can be optimized to encode a video frame into unique
layered codes by purely encoding residuals from previous lay-
ers, unlike the traditional layered coding where it is nontrivial
to handcraft each layer to have unique information.

3 Swift

3.1 Overview
Autoencoders are already shown to provide similar or better
performance relative to traditional codecs [32, 43, 60]. Recent
work such as Elf-vc [43] is also able to use Autoencoders
to provide flexible-rate video coding to fit a target network
capacity or achieve a target compression quality. However,
current work does not provide a way to encode in the video
in incrementally decodable layers. To do this, we make use of
residuals to form layered codes. A residual is the difference
between the input to an encoder and output of the correspond-
ing decoder. Residuals has been used in the past for tasks
such as recognition and compression to improve the applica-
tion’s efficiency (e.g., classification accuracy or compression
efficiency) [19, 55, 60].
Swift uses residuals for designing layered codecs for video

streaming. The idea is to employ a chain of Autoencoders of
identical structure. Each Autoencoder in the chain encodes the
residual from the previous layer, with the very first Autoen-
coder in the chain (implementing the base layer) encoding
the input video frames. Figure 6 shows an example, where
the residuals are shown from an original frame to a series
of progressively compressed-then-decoded frames. The first
decoded frame (marked with MS_SSIM = 0.9) has a relatively
high loss from the original frame. As a result, the residual
r0 has more information. When this residual information is
used for the next layer’s compression, the resulting decoded
frame is closer to the original, and in-turn the residual has
less information, and so on.

The above ‘iterative’ chaining implicitly represents a lay-
ered encoding mechanism. Each iteration (i.e., layer) pro-

duces a compressed version of the original video that we call
‘code.’ These codes encode incremental information such that
with more such codes decoded, the reconstruction becomes
progressively closer to the original. Swift essentially uses
this mechanism of residuals to create the layered codes. Such
iterative minimization of residual also acts as an implicit reg-
ularization to guide the reconstruction (at a given bandwidth),
instead of closely-following classical compression methods
as in Elf-vc [43].

Figure 7 shows the Autoencoder architecture (more details
in §3.2) on the server side. The architecture jointly learns
both the encoder and decoder in each layer. As before, the
Autoencoder’s weight parameters are trained to minimize
the reconstruction error between the input and output of the
decoder. In this process, the encoder generates a compact
code in each layer which is a compressed version of the input
video frames. These codes are transmitted to the client, where
they can be decoded for progressively better reconstructions.

The decoder learnt at the server is then optimized further
(§3.3) to be used at the client side. The client decoder initially
reconstructs the base layer from the first code. Then, if more
layers/codes are downloaded from the server, the decoder
reconstructs the residuals from the second layer onward, and
combines with the previous reconstruction(s) to generate the
output video frame.

Overall, Swift has three main components:
1. A learning-based layered encoder-decoder pair in a single

neural network to create residual-based layered codes on
the server-side (§3.2).

2. A separate learning-based decoder on the client side. This
decoder can decode any combination of layered codes in
a single-shot for real-time decoding (§3.3).

3. Extension of an ABR algorithm that can integrate the
codec into a complete end-to-end system (§4).

3.2 Layered Neural Encoder

We first describe how the encoder and the decoder are trained
at the server side. Assume, It is the image or video frame
at time t, for t ∈ {0,1, ...}. The encoder (E) takes each of
these frames as input and generates a compact code vector
(c) for each frame, i.e., ct = E(It). This code for each frame
is constructed by exploiting the redundancy across multiple
previous frames in the video. Therefore, the encoder takes a
set of previous frames as reference in order to encode each
frame. The decoder (D) reconstructs the frame Ît given ct ,
i.e., Ît = D(ct). The optimization problem here is to train E
and D pairs so as to minimize the difference between Ît and
It . Since we add our layered coding as a generic extension to
any neural codec without changing its internal logic, E and
D can be assumed as blackboxes. An example of a neural
codec is presented in Appendix A.

Figure 7 shows the design of our layered encoder-decoder
network on the server-side. Here, each iteration (or layer)

hE1

�̂�1

�̂�L

𝑟1

𝑟L

�̂�
0𝑟0

⊕
hE0

hEL

hD0

hD1

hDL

=I𝑟0

𝑟
0

𝑟
1= �̂�0_

𝑟
L-1

𝑟L = �̂�L-1_

Iteration 1

Iteration 2

Iteration L

Bi
na

riz
er

Bi
na

riz
er

Bi
na

riz
er

En
tro

py

En
co

de
r

En
tro

py

En
co

de
r

En
tro

py

En
co

de
r

En
tro

py

D
ec

od
er

En
tro

py

D
ec

od
er

En
tro

py

D
ec

od
er

11001..

10001..

01011..E

E

E

𝑐0

𝑐1

𝑐𝐿

Layered codes transmitted over network

𝐼$1

⊕ 𝐼$L

𝐼$0

Figure 7: Deep learning based layered coding: a) iterative
encoding (E) and decoding (D): in each iteration, E encodes
a residual into a code (ci) and the decoded output (from D) is
used to generate the residual for the next iteration.

encodes a residual ri into a code ci, where residual ri is the
difference between the encoder input and decoder output in
the previous layers. For the very first iteration, the encoder
directly encodes the the original video frame. Representing
this mathematically: ci = E(ri) and ri = ri−1 − r̂i−1 with r̂i =
D(ci), for i = 0, . . . ,L, with the exception that for i = 0 (base
layer), r0 = I.

At each iteration, the decoder can enhance the quality of
the video frame with a plain arithmetic sum of the outputs of
all previous iterations along with the base layer output. The
key here is that both E & D have separate hidden states (hE∗
and hD∗) that get updated iteratively, sharing information be-
tween iterations. In fact, this subset of weights shared across
iterations, allows better reconstruction of residuals. The en-
tropy (i.e., the information) is very high in the initial layers,
but progressively decreases due to the presence of the hidden
connections and thus the code size becomes progressively
smaller. The training objective for these iterative encoder-
decoder pairs is to minimize the L1 reconstruction loss for the
residuals:

Lrec =
1
L

L−1

∑
i=0

∥D(ci)− ri∥1

All Autoencoders E & D in the chain share the same net-
work and thus have identical input and output sizes. They
produce the same code sizes for all iterations. Swift relies
on a separate entropy encoding stage (Figure 7) to create the
residual codes that allocate proportional number of bits to
match the entropy in each iteration. The fixed length code vec-
tor from the output of the encoder E is binarized and passed
through a traditional entropy encoder similar to CABAC [54].

Note that the learned codec can work with a variety of
input video resolutions, and hence we do not need to train
a separate model for each video resolution. This is mainly
because the Autoencoder here takes one or more video frames
as input and extracts the features through convolutions (e.g.,
Conv2D [41]). Each convolutional kernel (with a fixed size
of k× k pixels that is much smaller than the input resolution)
is applied in a sliding window fashion on k × k blocks of
pixels to reduce the dimensions and form the Autoencoder’s

compact code vector. In our codec we use 4 downsampling
convolution blocks to reduce the dimensions. This makes
any input resolution (w×h) to be downsampled to (w/16)×
(h/16) resolution times the Autoencoder’s bottleneck bits (b)
after the encoding stage (see Appendix A). Therefore during
the testing, the encoder’s output for a 352×288 resolution
would be 22×18×b, while it is 80×45×b for 1280×720
resolution. Similarly the codec scales with other resolutions
during testing.

3.3 Layered Neural Decoder

The above iterative coding design already includes the de-
coder (Figure 7) that can reconstruct the video from the lay-
ered codes. In principle, the client can use the same decoder
already designed and learned on the server-side. However, the
iterative method incurs decoding latency proportional to the
number of iterations. This is because the residual codes are
created separately in each iteration and the decoder cannot
decode a code (ci) unless the previous iteration of encoder
encodes ci−1 and the corresponding decoder decodes it to
form the residual ri.

This latency is acceptable for video servers/CDNs that en-
code the videos offline and store them ready for on-demand
streaming, but clients need to decode the video in real-time
(≈30 fps). To address this, we develop a separate design of
single-shot decoder to be used at the clients, that can take any
combination of the codes as input and decode the correspond-
ing frames in one shot. See Figure 8.

𝑐
0

𝑐
1

⊕ 𝐼"
L

ss

E
n
tr

o
p
y

D
e
c
o
d
e
r

E
n
tr

o
p
y

D
e
c
o
d
e
r

Code Not

Available 0
0
..

Pad

zeros

H
1

H
2

H
L

Figure 8: Single-shot decoder
(Dss): a variable sized decoder
that takes a subset of the codes to
reconstruct a video frame in one
go.

The codes available
at the client are fused
and padded with zeros up
to a predetermined code
length (corresponding to
L levels) to account for
unavailable codes. They
are then fed into a ‘multi-
headed’ decoder (H) as
shown in the Figure 8.
In each head, the padded
version of each code ci
is separately processed
through individual neural
networks prior to combin-
ing them into a common network. When higher layers are
unavailable, the corresponding heads will have no effect on
reconstruction, and when available, generate a desired resid-
ual mapping. Essentially, these multiple heads are lightweight
and the common network (after combining the residual codes
after multiple-heads) follows the same decoder architecture
D from §3.2, but within one model. The heads or the com-
mon decoder do not share any parameters, in contrast to the
iterative decoder which shares hidden states across iterations.
Note that for preparing residual codes on the server-side, we

still need the iterative E-D architecture as described in §3.2.
To distinguish from the server-side decoder (D), we denote
this client-side single-shot decoder as Dss.

We train Dss by extending the objective function used at
the server-side. Specifically, in addition to the loss function
at the server-side decoder (D) which reconstructs a residual,
we add a loss function that corresponds to the actual image
reconstruction at client-side decoder (Dss) using the available
code layers. Using L1 loss function, both the objectives are
as shown below.

Lrec =
1
L

L−1

∑
i=0

[
∥D(ci)− ri∥1︸ ︷︷ ︸

residual quality loss

+
∥∥Dss(⊕i

k=0ck)− I
∥∥

1︸ ︷︷ ︸
image quality loss

]
Here, the server-side decoder (D) reconstructs the residual
image ri at each iteration based on the code ci, while the
client-side Dss reconstructs the original image I based on the
subset of the codes available at the corresponding iteration,
i.e., c0 . . .ci. This function allows us to train the encoder, and
both the decoders (server and clients-side) in a single training
loop. During the training, all three models E , D , and Dss are
jointly optimized by summing up the loss computed for E
and D in §3.2 and the direct loss computed for Dss that cor-
responds to original image reconstruction. This joint training
with a more complex objective (i.e., multiple loss functions)
does affect the performance of server-side decoder. The iter-
ative decoder from §3.2 has simpler objective than Dss, and
hence its performance is better when trained independently
(in which case only the second term in the loss function is
sufficient for Dss) compared to trained jointly. In our experi-
ments we observe very little drop in quality on average with
the joint training – that would be almost imperceptible to
users. Moreover, training each of these models can also incur
additional computation costs on servers.

4 Streaming with Layered Neural Codecs

Swift’s layered neural codes introduces two challenges to
end-to-end streaming. The first challenge arises because
Swift’s decoder at the client is expected to be run on the
GPU or other similar data-parallel accelerators and run in
software, instead of dedicated fixed hardware decoders as is
the norm for regular codecs. Even though the software codecs
have advantages in terms of on-demand codec upgrades and
agile development, it raises the possibility of resource con-
tention with other applications. Since GPU resource availabil-
ity can vary [33, 45], the client needs to be able to adapt to
the available resources.

The second challenge is in bitrate selection. Video stream-
ing protocols encode each video segment into different quali-
ties and uses ABR to select the next best quality video seg-
ment to stream. However, the ABR algorithm in Swift has a
more complex choice—should one fetch the next segment at
the highest possible quality or upgrade the current segment by

𝑐0

𝑐1
⊕

En
tr

op
y

De
co

de
r

En
tr

op
y

De
co

de
r

Code Not
Available 00

00
..

Pad
zeros

H1

H2

HL

Exits: 1 2 3 S

q1 q2 q3 qS

Figure 9: Scalable decoding using multiple exit heads to adapt
to dynamic compute capacity. Each exit provides a different
trade-off between compute capacity (and in-turn time required
to decode) and quality of the video segment.

fetching additional layers? This question is made even more
complex because the end-to-end streaming performance is af-
fected both by the network and the compute variability at the
client (see above). Traditional bitrate adaptation techniques
are designed to only adapt to network variability.

In this section, we describe the design of a scalable decoder
and neural-adapted ABR algorithm to tackle the challenges.

4.1 Scaling the Decoder based on Compute Ca-
pacity

The decoder architecture (shown in Figure 8) uses network
with a certain depth. 5 As is common in Autoencoders, the
more the depth, the better is the decoding accuracy, but lower
the depth, lower is the compute requirement.
Swift exploits this trade-off by designing multiple,

lightweight, output heads at different depths of the network.
The decoder then operates at different design points in the
accuracy vs compute requirement trade-off by exiting at dif-
ferent depths depending on the GPU capacity. We define GPU
capacity as the percentage of time over the past sample pe-
riod (1 sec in our case) during which one or more cores was
executing on the GPU. For example, a 100% GPU utilization
means all of the GPU cores are busy with other applications
in the last sample period. To this end, we introduce a number
of early-exit heads (hd j, where j = 1..S) in the Dss decoder
that are corresponding to different output video qualities. See
Figure 9. For example, if there are 5 exits in the network,
then each exit depth outputs ×16, ×8, ×4 and ×2 smaller in
resolution than the original image, with the final exit as the
original reconstruction. Here, the very first early exit outputs
a low quality while the final exit outputs higher quality. There
has been similar early exit networks used in the literature for
various tasks [28, 37].

In Swift, we define a loss function at each exit and opti-
mize the training objective of the decoder at all exits. The
decoder is trained by introducing additional L1 reconstruction

5here the depth refers to the number of layers in the neural network.

losses, so that the outputs of each of the early-exit heads mini-
mizes the difference with the original input (I). The objective
function is as shown below:

Lrec =
1
L

L−1

∑
i=0

[
∥D(ci)− ri∥1︸ ︷︷ ︸

residual quality loss

+
1

S+1

S

∑
j=0

∥∥∥Dss
hd j

(⊕i
k=0ck)− I

∥∥∥
1︸ ︷︷ ︸

image quality loss

]

1 2 3 4 5 6 7 8 9 10
No of Layers

1
2

3
4

E
xi

t D
ep

th

28

30

32

P
S

N
R

 (d
B

)

Figure 10: Quality matrix as a
function of exit depth and the
number of layered codes.

Here, S is the number
of exits. Given a com-
bination of these multi-
ple exits and downloaded
codes, the decoder outputs
the quality corresponding
to both dimensions. Fig-
ure 10 shows the heatmap
of average video quality
when the client decodes
different number layered codes while exiting at different
depths, for UVG videos described in §6.1. For example, if the
client only fetches the base layer (shown as 1 in the figure)
and exits at depth 1, the quality of the decoded segment is
28dB. However, if the client decodes 4 layers and decodes to
completion (exit at depth 4), the quality of the decoded seg-
ment increases to 32 dB. Note here that the number of layered
codes that can be fetched depends on the network capacity
while the exit depth depends on the compute capacity.

At runtime, Swift decoder decides on when to exit depend-
ing on the GPU capacity. The GPU capacity determines the
latency in decoding a segment by computing until different
depths. Given a GPU capacity, Swift chooses the maximum
depth such that the segment will be decoded without incurring
any stalls because the buffer is empty. In §5 we discuss how
the client chooses the decoder and obtains the relationship
between decode latency and exit depth.

4.2 Adapting ABR for Layered Neural Codecs
A traditional ABR algorithm [31,35,52] using regular codecs
takes as input the available throughput, buffer levels, and
details about the future video segments. The algorithm outputs
the quality of the video segment to download next. Swift
needs to adapt existing ABR algorithms to work with layered
neural codecs. We describe this adaptation in terms of changes
to ABR’s output, input, and the objective function. We then
discuss how we instantiate the ABR algorithm with these
changes. See Figure 11 for an overview. In the discussion
below, we assume that the ABR algorithm is run at the server;
but it can be adapted to run at the client.
Output: The crucial change to Swift’s ABR is that unlike
traditional ABR, our algorithm can make one of two choices:
download the base layer (i.e., the code with lowest quality)
of a future segment or, download an enhancement layer of
one of the buffered video segments (that is not played yet) to

Network

ABR
algorithm GPU

Decoder

GPU capacityNetwork
capacityDownload

decision

Client
buffer

Sizes, playback times Profiled
decoded quality

Base and
enhancement
layers of
segments

Segments

Client sideServer side

Decoder
profile

Historical decoded quality

Figure 11: Swift’s video streaming pipeline.

enhance quality. It makes this determination based on a (new)
set of inputs and the objective function. This change to the
output is needed for streaming algorithms that use layered
code, including Grad [31], the state-of-the-art streaming that
uses layered coding. We compare the performance of Swift
to Grad in §6.

Input: Swift introduces two additional inputs to the ABR
to take into account the compute variability while decoding.
ABR takes as input a matrix that maps the quality of the
decoded segment against compute capacity needed for this
decoding (similar to Figure 10). This quality matrix is gener-
ated offline at the server for each video segment for different
compute capacities i.e., for all combinations of layers and
exit depths. The next input is the current GPU capacity at
the client. Since we run the ABR algorithm at the server, this
information is sent by the client in the segment request packet.
If the ABR algorithm is run on the client, the GPU capacity
is readily available there. In this case the quality matrix at the
server can be sent as a part of the manifest file.

The second change is with respect to segments down-
loaded/buffered at the client but not yet played. Swift’s ABR
needs information about these segments to makes it choice.
Specifically, this includes i) the size of the remaining layers
for current/buffered segments, ii) the playback time of all
segments in the buffer, to determine if the segment can be
enhanced before playback. In addition to that, we input the
history of the decoded quality of the last k displayed segments
to reduce variation in quality (this is often called smoothness
and is an important metric for improving QoE).

Objective function: The video Quality of Experience (QoE)
is typically captured using three metrics: i) playback quality
(Q), i.e., the quality of the downloaded segments and ii) re-
buffering ratio (R) that measures how often the video stalls
because the buffer is empty, iii) smoothness (S) that mea-
sures fluctuation in quality. Formally, QoE = Q−αR−βS,
where α and β are the coefficients to control the penalties of
rebuffering and smoothness [31, 35, 52]. Since Swift’s de-
coding performance is variable, it may not always provide the
best quality that is possible from the downloaded segments.
So instead, the objective function in Swift takes into account
the quality of the decoded segment (Qd) instead of the down-
loaded segment. Similarly, we compute the smoothness from
the quality of decoded segments (Sd) instead of downloaded
qualities.

5 Implementation and System Setup

Swift’s end-to-end implementation includes its layered neu-
ral codecs and the ABR protocol presented in §3.1 and §4.

5.1 Layered Codec Implementation

We implement our layered coding on top of VCII [60]. VCII
is a state-of-the-art neural codec that is learnt over an Autoen-
coder network. VCII achieves compression efficiency close to
state-of-the-art regular (non-neural) video codecs. Similar to
regular codecs, VCII does not produce layered codes. Instead,
we implement the layered encoder over VCII as described
in §3.2. For the decoder at the client, similarly, we modify
the loss function to incorporate the single-shot decoding and
multi-exit decoder capability. Since our layered technique can
be applied as a general extension to any codec, we do not
need to change the internal codec logic.

After designing the new encoder/decoder over VCII, the
encoder and decoder is retrained for 100K iterations on an
Nvidia RTX 2070 GPU. We use ADAM optimizer with a
batch size of 16. During the training, we use multiple ran-
domly cropped 64×64 image patches from the original im-
ages for generalization purposes. The model is trained to
produce up to 10 layered codes.

For training, we use the Kinetics dataset [13]. It has 37K
videos. We train on 27K, test on 10K videos. For more rig-
orous testing, we also test on completely different datasets
(more details about testing in §6). The training takes around
6 hours. Since the training will be done offline and only once,
the training time is reasonable.

5.2 Streaming Implementation

We implement our adapted ABR by modifying Pensieve [35].
For training the ABR model, we use k = 10 throughput and
compute capacity measurements passing through a 1D-CNN
with 128 filters, the quality matrix passed through a 2D-CNN,
and aggregated with other inputs described in §4.2. The learn-
ing rate and discount factor for the network are 0.001 and
0.99 respectively. We run the ABR algorithm every time a
segment or its layer (s) is downloaded. We train the model
using simulated network and compute traces, similar to that
used in Pensieve [35].

We run the ABR algorithm at the server. Similar to other
video streaming servers, the Swift server processes the video
segments and encodes them. The server also performs fine-
grained profiling of the decoder for two bits of information.
First, it creates a matrix of quality levels for different depths.
Second, it creates a mapping between GPU capacities and
time taken to finish decoding until different depths. Both of
this are used as input to the adapted ABR algorithm.

6 Swift Evaluation

We evaluate Swift both in terms of end-to-end streaming
and coding performance. We compare Swift with a suite
of streaming algorithms and its layered coding with com-
monly used regular codec (HEVC) [68] and layered codec
(SHVC) [3]. Our evaluation shows that:
• Overall QoE with Swift improves by 45% at the median

compared to the second best streaming performance.
• Swift uses 16% and 22% less bandwidth compared to

next best streaming algorithms that use regular and layered
codecs, respectively.

• Swift’s neural layered codec improves compression effi-
ciency by 58% over state-of-the-art layered codec SHVC.

6.1 Evaluation Methodology

In this section, we describe the methodology to evaluate
Swift’s end-to-end streaming performance.
Experimental set up. We conduct all experiments on a desk-
top with Nvidia 2070 RTX GPU as the client. Our evaluation
uses FullHD videos from UVG [5] dataset consisting of 7
videos for streaming.6 Each video is of 5 mins and is di-
vided into 5 second segments. Each experiment runs for all
segments in the video emulated over network capacity and
compute capacity traces (described below). The performance
is reported as an average across all the segments in the video.
Network and compute conditions. Most of our evaluation
is over real traces collected by FCC [8], similar to recent
video streaming works [35, 69]. We use 500 traces and filter
the traces to have a minimum bandwidth of 1 Mbps. After
filtering, FCC dataset has an average bandwidth of 8.2 Mbps
with a standard deviation of 3.6 Mbps. These traces capture
real world network throughput variations.

Unlike other video streaming approaches, Swift is affected
by compute capacity. To stress test our system, we evaluate
Swift by synthetically varying the client’s GPU capacity. We
modify the GPU capacity by choosing a random number of
the processes to be active in each time slot; the number of
processes active is modeled as a Poisson distribution with
λ = 5. Each process shares the GPU equally and we constrain
the maximum number of processes to 5.

An ideal scenario for Swift is when the GPU capacity
is fixed and 100% of the GPU is available. For complete-
ness, we run experiments under this condition. We refer to
this as Swift-C in the graphs. For a fair comparison, we
compare Swift with existing methods assuming they have
hardware accelerated decoding, while varying GPU resources
for Swift.
Metrics. We measure streaming performance using the fol-
lowing metrics: 1) video QoE (as defined in §4.2) normalized

6Note that the compression performance is evaluated using a more diverse
and standard set of video sequences (see §6.3.1).

against maximum QoE possible and averaged across all seg-
ments for all traces, 2) bandwidth usage, 3) reaction time (as
defined in §6.2.3).
Baselines. We compare the performance of Swift with mul-
tiple state-of-the-art streaming algorithms that use different
combinations of video coding and ABR algorithms:
• Grad [31]: Grad is the state-of-the-art algorithm using

layered coding technique (SHVC [12]) combined with
ABR. This is the closest system to Swift. Grad employs
a hybrid coding mechanism with SHVC to minimize the
cross layer compression overhead and uses a reinforcement
learning-based ABR adapted from Penseive [35].

• BOLA [52]: BOLA and the two alternatives below use
regular (not layered) codec H.265. BOLA uses an ABR
algorithm that maximizes the quality of the video segment
based on the buffer levels at the client. BOLA is commonly
used in the industry [2].

• Pensieve [35]: Pensieve is also built over H.265 [53] but
uses a reinforcement learning-based ABR algorithm.

• BOLA-FS [51]: BOLA-FS builds over H.265 [53] and
uses buffer levels at the client to choose the next video seg-
ment, similar to BOLA. However, different from BOLA,
BOLA-FS allows video quality upgrades, where low qual-
ity segments in the buffer are replaced with higher quality
by re-downloading them, when network conditions im-
prove. The problem is that the previously downloaded
segments are not used, resulting in wasted bandwidth.

In all of these cases, when using H.265 [53], we encode each
segment into six bitrates:{1Mbps, 5Mbps, 8Mbps, 12Mbps,
16Mbps}. For Grad, which uses scalable coding, we encode
the video in six layers to achieve similar quality levels. We
note that in both cases, encoding the videos into 6 quality
levels provided the best results. In case of H.265, it does not
support fine-grained adaptation to work well with more qual-
ity levels. In case of Grad/SHVC, the compression overhead
is too high when using more quality levels. For Swift, we
encode up to 10 layers for more flexible adaptation as there is
no compression overhead.

6.2 End-to-end Streaming Results

6.2.1 End-to-end QoE Results

Figure 12 shows the overall QoE of Swift compared with the
four alternatives, along with Swift-C. Swift-C represents the
best possible performance of Swift, when compute capacity
does not vary and GPU availability is 100%.

We first compare Swift with Grad and BOLA-FS which
can both upgrade quality of the buffered video segments when
network conditions improve. Swift improves QoE by 43%
and 48% compared to Grad and BOLA-FS respectively. In the
case of Grad, the problem is the high compression overhead
incurred in implementing layered coding (§2.3). In case of
BOLA-FS, there is a significant bandwidth wastage. When

0.5 1.0 1.5 2.0 2.5
Normalized Average QoE

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

Swift-C
Swift
Grad
BOLA-FS
Pensieve
BOLA

Figure 12: End-to-end QoE. Swift im-
proves QoE by 45% at the median compared
to the second best performing algorithm.

Better

Better

Figure 13: Breakdown of QoE. Overall, Swift has
higher quality level while having less rebuffering
and smoothness penalty.

Swift w/o
 Multi-Exit

Swift w/o
 ABR

 Changes

Swift0.00

0.25

0.50

0.75

No
rm

al
ize

d
Av

er
ag

e
Qo

E

Figure 14: Breakdown
Swift’s performance with
its individual components.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Bandwidth Usage

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

Swift
Grad
BOLA-FS
Pensieve
BOLA

Figure 15: Bandwidth usage of Swift compared to state-of-
the-art streaming systems. Swift improves bandwidth usage
especially with respect to systems that upgrade quality when
the network conditions improve, namely, BOLA-FS and Grad.

compared to Pensieve and BOLA, Swift outperforms by 67%
and 74% respectively. Both Pensieve and BOLA do not up-
grade video segment quality when the network improves,
resulting in poorer quality.

Swift-C (Figure 12) shows the QoE achieved when GPU
is not fluctuating and 100% of the GPU is used. As ex-
pected, Swift-C outperforms Swift under varying GPU.
We also evaluated Swift under WiFi (802.11ac) network
(client-server RTT: 20ms) without throttling the bandwidth
and Nvidia 2070 GPU at 100%. We find that, Swift still
outperforms the next-best-performing algorithm by 28%.

QoE breakdown Figure 13 shows the performance of the five
streaming algorithms in terms of each QoE component: aver-
age quality of the video segments, rebuffering, and smooth-
ness penalty. Swift improves average quality by 19% com-
pared to the next-best streaming alternative. Swift also de-
creases rebuffering and smoothness penalty by 8% and 11%,
respectively, compared to the next best streaming alternative.

Ablation study Figure 14 shows the impact of Swift’s
components: 1) Swift without multi-exit, 2) Swift without
adapted ABR. The figure shows that both components are
critical to the performance of Swift. Swift without multi-
exit performs poorly compared to the full Swift because the
decoder runs through the entire network even when GPU
capacity is low rather than exit early. This results in high de-
coding latency and in-turn high video stalls. In case of Swift
without adapting ABR, the system performs poorly because it
only adapts to network variations and not compute variations.

6.2.2 Bandwidth Benefits

Figure 15 shows the bandwidth benefits of Swift over ex-
isting streaming alternatives. Swift uses 16% and 22% less
bandwidth compared to Grad and BOLA-FS, incurred due
to compression overhead and wasted bandwidth respectively.
Pensieve and BOLA results in comparatively less bandwidth
waste, but cannot upgrade quality when the network improves
resulting in poorer video quality (Figure 12).

6.2.3 Reaction to Bandwidth Fluctuations

One key advantage of Swift, or layered coding in general,
is that it can adapt to bandwidth fluctuation without wasting
bandwidth (see Figure 3). To illustrate this, we use an example
network trace that starts with an average low bandwidth of
1 Mbps for 100 seconds and increases to average 18 Mbps for
the rest of the trace (250 secs).

To compare the performance of these different streaming
techniques, we measure the reaction time in two ways: 1)
reaction time to any quality (RTA), which is the elapsed time
between when the bandwidth increases to when the user expe-
riences any higher quality video, 2) reaction time to highest
quality (RTH), which is the elapsed time between when the
bandwidth increases to when the user experiences the highest
sustainable video quality.

Figure 16 shows one scenario how the different stream-
ing algorithms adapt to changing network condition for a
250 second sample trace. The black line shows the change
in throughput. Swift is the first to react to the change in
throughput of all the other alternatives. Figure 17 shows qual-
itatively that Swift reacts faster, both in terms of RTA and
RTH, compared to the alternatives.

Overall, the normalized average video segment quality of
Swift throughout the trace was 1.8 compared to the next best
alternative, which was 1.6. The reaction time is low even when
the throughput decreases instead of increasing (not shown).

6.3 Compression Results
We compare Swift’s codec with:

• HEVC [53]: This is the most commonly used video codec
for video streaming today. We use the libx265 library

0 50 100 150 200 250
Time (sec)

0

10

20

30
Bi

tra
te

 (M
bp

s)
Swift
Grad
BOLA-FS

Throughput
Pensieve
BOLA

Figure 16: Swift reacts faster compared to all other alterna-
tives. Throughput changes at the 100 second mark.

0 50 100
Reaction Time to Any Quality (s)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F Swift

Grad
BOLA-FS
Pensieve
BOLA

(a) Reaction time to any quality

0 50 100
Reaction Time to Highest Quality (s)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F Swift

Grad
BOLA-FS
Pensieve
BOLA

(b) Reaction time to highest quality

Figure 17: Reaction time. Swift reacts 2× and 2.5× faster
than Grad and BOLA-FS to reach highest quality, and 25%
and 40% faster to reach any high quality.

from FFMPEG [7]. We did not investigate the latest coding
standard VVC [59] as it is still in its early stage. We report
H.265 results with commonly used codec configuration.7

• Scalable HEVC (SHVC) [12]: This is a state-of-the-art
layered coding method, built as a scalable extension of
HEVC also known as SHVC [12]. We evaluate SHVC
using a reference implementation from [1].

We present the result averaged over three datasets. One
dataset is the test set from the Kinetics dataset (§5). The other
two datasets are VTL [6] and UVG [5] that are not used
in training. All VTL test videos are in 352×288 and UVG
videos are in 1920×1080 resolution.

6.3.1 Compression Efficiency

Figure 18 shows the video quality vs. video size in terms of
bits per pixel (BPP) after compression. The metrics we use
are: 1) PSNR – this computes the peak signal to noise ratio
between two images (higher PSNR indicates better quality
of reconstruction), and 2) MS-SSIM (multi-scale structural
similarity index method) – a perceptual quality metric taking
into account the structural information to weigh more on
the spatially close pixels with strong inter-dependencies [56].
For SHVC and Swift’s layered coding a total of 6 layers
are used to produce the plots – each point refers to the joint
performance of all 6 layers. For HEVC or H.265, each quality
point is encoded independently with a different bitrate.
Swift’s layered coding achieves 58% better compression

on average compared to traditional layered coding (SHVC).
7We use fast preset with group of pictures value 30.

0.0 0.2 0.4 0.6 0.8 1.0
Bits Per Pixel

32

34

36

PS
NR

 (d
B)

Swift's Layered Coding
HEVC
Scalable HEVC

(a) PSNR

0.0 0.2 0.4 0.6 0.8 1.0
Bits Per Pixel

0.8

0.9

1.0

M
S-

SS
IM

Swift's Layered Coding
HEVC
Scalable HEVC

(b) MS-SSIM

Figure 18: Compression efficiency. Swift’s Layered coding
outperforms the traditional layered coding SHVC and per-
forms close to HEVC.

1 2 3 4 5 6
Number of Layers

0

10

20

En
co

di
ng

 L
at

en
cy

 (s
)

Swift's Layered Coding
Scalable HEVC

(a) Encoding Latency

1 2 3 4 5 6
Number of Layers

0

20

40

De
co

di
ng

 L
at

en
cy

 (m
s)

Swift's Layered Coding
Scalable HEVC

(b) Decoding Latency

Figure 19: Encoding and Decoding latency. Both the encoding
and decoding latency Swift’s layered coding is significantly
less than traditional layered coding. More importantly, the
decoding latency of Swift’s layered coding is independent
of number of layered codes unlike traditional layered coding.

The compression difference is mainly due to the cross-layer
overhead incurred by SHVC. Swift’s compression is close
to that of HEVC with Swift performing poorer by 0.02 MS-
SSIM and 0.8 dB in the median case. However, the QoE when
using Swift is still better than the QoE than HEVC because
of the fine-grained rate adaptation benefits.

6.3.2 Encoding and Decoding Latency

In this set of experiments, we compare the encoding and
decoding latency of Swift’s codec and the state-of-the-art
layered codec (we omit regular HEVC codec here because
it has negligible latencies). The evaluation here benchmarks
the latency on a Desktop machine (Intel 12 core CPU with
Nvidia RTX 2070 GPU).8 Figure 19 shows average per-frame
encoding and decoding latency as a function of number of lay-
ers. There is 15× increase in encoding latency from layer one
to six in case of traditional layared coding (SHVC). Swift’s
layered coding has an encoding latency of 20ms for one layer
and increases proportionately by 6× for the sixth layer. While
improvements are still needed to get close to the encoding la-
tency of regular (non-layered) codec, the encoding latency in
Swift is significantly less than SHVC. More importantly, the
decoding latency of Swift’s layered coding is independent
of the number of layers, while SHVC increases proportion-
ately similar to encoding latency. This is due to the use of the
single-shot decoder of Swift (§3.3).

8Of note, HEVC and SHVC are run on the CPU and our layered coding
runs on GPU as it is the most efficient on the GPU.

7 Discussion

Swift’s layered coding addresses compression overhead chal-
lenge highlighted in §2. Below we discuss some of the addi-
tional benefits as well as limitations of layered neural codecs.

7.1 Additional Opportunities of Neural Codecs
Flexible data-driven approach: In a learning-based ap-
proach to video coding the learning can be made video spe-
cific, for example, customized to video types [9], likely provid-
ing an opportunity to better learn video type-specific features.
This ultimately leads to streaming quality improvements rela-
tive to the one-size-fits-all solution that exists today.
Software-defined coding: Unlike existing codecs, neural
codecs do not need to be baked into a fixed hardware. They
are more easily upgradable. Common ML tools (e.g., Py-
torch with CUDA support) ensure that running neural codecs
on data parallel co-processors (e.g., GPUs) requires signifi-
cantly less development cycle compared to porting traditional
codecs. The softwarization of video coding gives the content
providers flexibility to integrate codec features on demand,
support agile codec development, provide royalty-free codecs,
and eliminate compatibility issues.
Design of application-specific codecs: Various video ana-
lytics solutions [21, 24, 62] often apply DNN-based analytics
(e.g., object detection and classification) on video streams
that are coded using traditional video codecs. However, this
results in suboptimal performance because they are originally
designed for human perceptual quality. Instead, neural codecs
are amenable to training with loss functions more tuned to-
wards appropriate analytics. Similarly, specialized codecs can
be designed for conferencing or surveillance that may have
constant backgrounds or other commonly appearing features
that, once learnt, can be compressed very efficiently.

7.2 Limitations of Neural Codecs
One key assumption of Swift is that the client devices need
to be equipped with GPUs or other similar accelerators to
run neural networks. Otherwise, the decoding latency could
become a bottleneck. While such accelerators are expected to
be commonplace, they do add to the device cost and energy
consumption. Also, the current design of Swift targets on-
demand video streaming because the iterative layered coding
does not offer real-time encoding. More work is needed on
the encoding side for applying Swift to live video applica-
tions (such as conferencing or live analytics) to overcome the
encoding latency challenges.

Finally, the QoE evaluations for Swift are done using a
learning based ABR algorithm based on Pensieve [35] and
Grad [31]. It may be challenging to generalize such algo-
rithms for unknown environments that can still occur in prac-
tice [34, 63]. However, given our characterization of the input

and output along with the objective function, we expect that
other algorithmic ABR approaches (such as BOLA [52] or
FUGU [63]) are equally applicable for Swift.

8 Related Work

Video streaming: There has been an extensive prior work
on improving QoE for regular video streaming. Much of
the previous work focuses on improving the adaptive bi-
trate algorithms by better predicting the available through-
put. Festive [25] predicts throughput using a harmonic mean.
BBA [23] and BOLA [52] take into account the buffer ca-
pacity to determine video bitrate. Fugu [63] and MPC [66]
use learning-based throughput prediction. There is a recent
interest in using reinforcement learning for adaptive bitrate se-
lection (e.g., Pensieve [35] and other follow-up work). Recent
solutions such as SENSEI [69] improves QoE by introducing
user sensitivity into ABR algorithms. Swift is able to extend
existing ABR algorithms for use with neural codecs and can
synergistically optimize network and compute resources to
improve QoE.
Video compression: Traditional compression methods such
as H.264/265 [53, 57] employ many algorithms that include
frame prediction [64, 70], transform coding and quantiza-
tion [18, 40, 48, 58], and entropy coding [54]. In the past
decade or two, there have been several studies on improving
both the compression efficiency and coding latency for these
algorithms on an individual basis [15, 16, 26, 49]. Similarly,
there have been extensive studies on improving the traditional
layered coding, while still facing challenges of compression
overhead and high latency [11, 14, 67]. Unlike all these algo-
rithmic codecs, there is a recent shift in codec design using
deep learning [32, 43, 44, 60]. Swift belongs to this second
category and develops layered coding on top of neural codecs.

9 Conclusions

We have described Swift, an adaptive video streaming system
using layered neural codecs that use deep learning. Swift’s
neural codec achieves efficient layered compression without
introducing cross layer compression overheads and eliminates
the dependency of decoding latency on the number of layers.
Swift extends existing ABR frameworks to accommodate
layered neural codecs and demonstrates significant perfor-
mance benefits compared to state-of-the-art adaptive video
streaming systems.

Acknowledgements

We thank our shepherd Junchen Jiang and the anonymous re-
viewers for their feedback, which greatly improved the paper.
This work was partially supported by the Partner University
Fund, the SUNY2020 ITSC, and a gift from Adobe.

References

[1] A Reference Implementation of SHVC (Scalable ex-
tentino to HEVC). https://hevc.hhi.fraunhofer.de/shvc.

[2] Akamai players. https://players.akamai.com/players/dashjs.

[3] HEVC scalability extension.
https://hevc.hhi.fraunhofer.de/shvc.

[4] libvpx-vp9. https://trac.ffmpeg.org/wiki/Encode/VP9.

[5] Ultra video group. http://ultravideo.fi/.

[6] Video trace library. http://trace.eas.asu.edu/index.html.

[7] x265. https://trac.ffmpeg.org/wiki/Encode/H.265.

[8] Measuring broadband America,
FCC. https://www.fcc.gov/reports-
research/reports/measuring-broadband-america/raw-
data-measuring-broadband-america-eighth, 2018.

[9] Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul
Natsev, George Toderici, Balakrishnan Varadarajan,
and Sudheendra Vijayanarasimhan. Youtube-8m: A
large-scale video classification benchmark. preprint
arXiv:1609.08675, 2016.

[10] Shivang Aggarwal, Urjit Satish Sardesai, Viral Sinha,
Deen Dayal Mohan, Moinak Ghoshal, and Dimitrios
Koutsonikolas. LiBRA: learning-based link adaptation
leveraging PHY layer information in 60 GHz WLANs.
In ACM Confernece on Emerging Networking Experi-
ments and Technologies, pages 245–260, 2020.

[11] Ghufran Baig, Jian He, Mubashir Adnan Qureshi, Lili
Qiu, Guohai Chen, Peng Chen, and Yinliang Hu. Jigsaw:
Robust live 4K video streaming. In MobiCom, pages
1–16, 2019.

[12] Jill M Boyce, Yan Ye, Jianle Chen, and Adarsh K Rama-
subramonian. Overview of shvc: Scalable extensions of
the high efficiency video coding standard. IEEE Trans-
actions on Circuits and Systems for Video Technology,
26(1):20–34, 2015.

[13] Joao Carreira and Andrew Zisserman. Quo vadis, Action
recognition? A new model and the kinetics dataset. In
CVPR. IEEE, 2017.

[14] Jacob Chakareski, Sangeun Han, and Bernd Girod. Lay-
ered coding vs. multiple descriptions for video stream-
ing over multiple paths. Multimedia Systems, 10(4):275–
285, 2005.

[15] Mei-Juan Chen, Yu-De Wu, Chia-Hung Yeh, Kao-Min
Lin, and Shinfeng D Lin. Efficient CU and PU deci-
sion based on motion information for interprediction of
HEVC. IEEE Transactions on Industrial Informatics,
14(11):4735–4745, 2018.

[16] Santiago De-Luxán-Hernández, Valeri George, Jackie
Ma, Tung Nguyen, Heiko Schwarz, Detlev Marpe, and
Thomas Wiegand. An intra subpartition coding mode for
vvc. In 2019 IEEE International Conference on Image
Processing (ICIP), pages 1203–1207. IEEE, 2019.

[17] Anis Elgabli, Vaneet Aggarwal, Shuai Hao, Feng Qian,
and Subhabrata Sen. LBP: robust rate adaptation algo-
rithm for SVC video streaming. IEEE/ACM Transac-
tions on Networking, 26(4):1633–1645, 2018.

[18] Vivek K Goyal. Theoretical foundations of transform
coding. IEEE Signal Processing Magazine, 18(5):9–21,
2001.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[20] Geoffrey E Hinton and Ruslan R Salakhutdinov. Re-
ducing the dimensionality of data with neural networks.
science, 313(5786):504–507, 2006.

[21] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik,
Shivaram Venkataraman, Paramvir Bahl, Matthai Phili-
pose, Phillip B Gibbons, and Onur Mutlu. Focus: Query-
ing large video datasets with low latency and low cost.
In Usenix OSDI, pages 269–286, 2018.

[22] Hanzhang Hu, Debadeepta Dey, Martial Hebert, and
J Andrew Bagnell. Learning anytime predictions in
neural networks via adaptive loss balancing. In AAAI,
volume 33, pages 3812–3821, 2019.

[23] Te-Yuan Huang, Ramesh Johari, Nick McKeown,
Matthew Trunnell, and Mark Watson. A buffer-based
approach to rate adaptation: Evidence from a large video
streaming service. ACM SIGCOMM Computer Commu-
nication Review, 44(4):187–198, 2015.

[24] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik,
Siddhartha Sen, and Ion Stoica. Chameleon: scalable
adaptation of video analytics. In ACM SIGCOMM,
pages 253–266, 2018.

[25] Junchen Jiang, Vyas Sekar, and Hui Zhang. Improving
fairness, efficiency, and stability in http-based adaptive
video streaming with festive. IEEE/ACM Transactions
on Networking (ToN), 22(1):326–340, 2014.

[26] Y-H Kim, J-W Yoo, S-W Lee, J Shin, J Paik, and H-
K Jung. Adaptive mode decision for H.264 encoder.
Electronics letters, 40(19):1172–1173, 2004.

[27] PoLin Lai, Shan Liu, and Shawmin Lei. Low latency
directional filtering for inter-layer prediction in scalable
video coding using hevc. In 2013 Picture Coding Sym-
posium (PCS), pages 269–272. IEEE, 2013.

[28] Stefanos Laskaridis, Alexandros Kouris, and Nicholas D
Lane. Adaptive inference through early-exit networks:
Design, challenges and directions. arXiv preprint
arXiv:2106.05022, 2021.

[29] Athanasios Leontaris and Pamela C Cosman. Drift-
resistant snr scalable video coding. IEEE transactions
on image processing, 15(8):2191–2197, 2006.

[30] Weiyao Lin, Krit Panusopone, David M Baylon, and
Ming-Ting Sun. A computation control motion esti-
mation method for complexity-scalable video coding.
IEEE transactions on circuits and systems for video
technology, 20(11):1533–1543, 2010.

[31] Yunzhuo Liu, Bo Jiang, Tian Guo, Ramesh K Sitaraman,
Don Towsley, and Xinbing Wang. Grad: Learning for
overhead-aware adaptive video streaming with scalable
video coding. In Proceedings of the 28th ACM Interna-
tional Conference on Multimedia, pages 349–357, 2020.

[32] Guo Lu, Wanli Ouyang, Dong Xu, Xiaoyun Zhang,
Chunlei Cai, and Zhiyong Gao. DVC: An end-to-end
deep video compression framework. In CVPR, pages
11006–11015, 2019.

[33] Kshiteej Mahajan, Arjun Balasubramanian, Arjun
Singhvi, Shivaram Venkataraman, Aditya Akella, Amar
Phanishayee, and Shuchi Chawla. Themis: Fair and effi-
cient GPU cluster scheduling. In 17th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 20), pages 289–304, 2020.

[34] Hongzi Mao, Shannon Chen, Drew Dimmery, Shaun
Singh, Drew Blaisdell, Yuandong Tian, Mohammad Al-
izadeh, and Eytan Bakshy. Real-world video adap-
tation with reinforcement learning. arXiv preprint
arXiv:2008.12858, 2020.

[35] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh.
Neural adaptive video streaming with pensieve. In ACM
SIGCOMM, pages 197–210. ACM, 2017.

[36] Steven McCanne, Martin Vetterli, and Van Jacobson.
Low-complexity video coding for receiver-driven lay-
ered multicast. IEEE journal on selected areas in com-
munications, 15(6):983–1001, 1997.

[37] Alessandro Montanari, Manuja Sharma, Dainius Jenkus,
Mohammed Alloulah, Lorena Qendro, and Fahim
Kawsar. ePerceptive: Energy Reactive Embedded In-
telligence for Batteryless Sensors. In Proceedings of
the 18th Conference on Embedded Networked Sensor
Systems, pages 382–394, 2020.

[38] Arvind Narayanan, Eman Ramadan, Jason Carpenter,
Qingxu Liu, Yu Liu, Feng Qian, and Zhi-Li Zhang. A
first look at commercial 5g performance on smartphones.

In Proceedings of The Web Conference 2020, pages 894–
905, 2020.

[39] Arvind Narayanan, Eman Ramadan, Rishabh Mehta,
Xinyue Hu, Qingxu Liu, Rostand AK Fezeu, Udhaya Ku-
mar Dayalan, Saurabh Verma, Peiqi Ji, Tao Li, et al. Lu-
mos5g: Mapping and predicting commercial mmwave
5g throughput. In Proceedings of the ACM Internet
Measurement Conference, pages 176–193, 2020.

[40] Tung Nguyen, Philipp Helle, Martin Winken, Benjamin
Bross, Detlev Marpe, Heiko Schwarz, and Thomas Wie-
gand. Transform coding techniques in hevc. IEEE Jour-
nal of Selected Topics in Signal Processing, 7(6):978–
989, 2013.

[41] Keiron O’Shea and Ryan Nash. An introduction
to convolutional neural networks. arXiv preprint
arXiv:1511.08458, 2015.

[42] Amy R Reibman, Leon Bottou, and Andrea Basso. Scal-
able video coding with managed drift. IEEE trans-
actions on circuits and systems for video technology,
13(2):131–140, 2003.

[43] Oren Rippel, Alexander G Anderson, Kedar Tatwawadi,
Sanjay Nair, Craig Lytle, and Lubomir Bourdev. Elf-
vc: Efficient learned flexible-rate video coding. arXiv
preprint arXiv:2104.14335, 2021.

[44] Oren Rippel, Sanjay Nair, Carissa Lew, Steve Branson,
Alexander G Anderson, and Lubomir Bourdev. Learned
video compression. preprint arXiv:1811.06981, 2018.

[45] Francisco Romero, Qian Li, Neeraja J Yadwadkar, and
Christos Kozyrakis. Infaas: Automated model-less infer-
ence serving. In 2021 Usenix ATC 21, pages 397–411,
2021.

[46] Swetank Kumar Saha, Shivang Aggarwal, Rohan Pathak,
Dimitrios Koutsonikolas, and Joerg Widmer. MuSher:
An Agile Multipath-TCP Scheduler for Dual-Band
802.11 ad/ac Wireless LANs. In The 25th Annual In-
ternational Conference on Mobile Computing and Net-
working, pages 1–16, 2019.

[47] Heiko Schwarz, Detlev Marpe, and Thomas Wiegand.
Overview of the scalable video coding extension of the
H.264/AVC standard. IEEE Transactions on circuits and
systems for video technology, 17(9):1103–1120, 2007.

[48] Heiko Schwarz, Tung Nguyen, Detlev Marpe, and
Thomas Wiegand. Hybrid video coding with trellis-
coded quantization. In 2019 Data Compression Confer-
ence (DCC), pages 182–191. IEEE, 2019.

[49] Mahmut E Sinangil, Vivienne Sze, Minhua Zhou, and
Anantha P Chandrakasan. Cost and coding efficient

motion estimation design considerations for high effi-
ciency video coding (HEVC) standard. IEEE Journal
of selected topics in signal processing, 7(6):1017–1028,
2013.

[50] Iraj Sodagar. The MPEG-DASH standard for multime-
dia streaming over the internet. IEEE MultiMedia, (4),
2011.

[51] Kevin Spiteri, Ramesh Sitaraman, and Daniel Sparacio.
From theory to practice: Improving bitrate adaptation in
the dash reference player. ACM Transactions on Multi-
media Computing, Communications, and Applications
(TOMM), 15(2s):1–29, 2019.

[52] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K Sitara-
man. Bola: Near-optimal bitrate adaptation for on-
line videos. IEEE/ACM Transactions on Networking,
28(4):1698–1711, 2020.

[53] Gary J Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and
Thomas Wiegand. Overview of the high efficiency video
coding (HEVC) standard. IEEE Transactions on circuits
and systems for video technology, 22(12):1649–1668,
2012.

[54] Vivienne Sze and Madhukar Budagavi. High Through-
put CABAC Entropy Coding in HEVC. IEEE Trans-
actions on Circuits and Systems for Video Technology,
22(12):1778–1791, 2012.

[55] George Toderici, Damien Vincent, Nick Johnston, Sung
Jin Hwang, David Minnen, Joel Shor, and Michele Cov-
ell. Full resolution image compression with recurrent
neural networks. In CVPR, pages 5306–5314, 2017.

[56] Zhou Wang, Eero P Simoncelli, and Alan C Bovik. Mul-
tiscale structural similarity for image quality assessment.
In The Thrity-Seventh Asilomar Conference on Signals,
Systems & Computers, 2003, volume 2, pages 1398–
1402. Ieee, 2003.

[57] Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard,
and Ajay Luthra. Overview of the H.264/AVC video
coding standard. IEEE Transactions on circuits and
systems for video technology, 13(7):560–576, 2003.

[58] Mathias Wien. Variable block-size transforms for
H.264/AVC. IEEE Transactions on Circuits and Sys-
tems for Video Technology, 13(7):604–613, 2003.

[59] Mathias Wien and Benjamin Bross. Versatile video
coding–algorithms and specification. In 2020 IEEE
International Conference on Visual Communications
and Image Processing (VCIP), pages 1–3. IEEE, 2020.

[60] Chao-Yuan Wu, Nayan Singhal, and Philipp Krahenbuhl.
Video compression through image interpolation. In
ECCV, pages 416–431, 2018.

[61] Feng Wu, Shipeng Li, and Ya-Qin Zhang. A framework
for efficient progressive fine granularity scalable video
coding. IEEE transactions on Circuits and Systems for
Video Technology, 11(3):332–344, 2001.

[62] Xiufeng Xie and Kyu-Han Kim. Source compression
with bounded dnn perception loss for iot edge computer
vision. In ACM MobiCom, pages 1–16, 2019.

[63] Francis Y Yan, Hudson Ayers, Chenzhi Zhu, Sadjad
Fouladi, James Hong, Keyi Zhang, Philip Levis, and
Keith Winstein. Learning in situ: a randomized ex-
periment in video streaming. In 17th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 20), pages 495–511, 2020.

[64] Jiheng Yang, Baocai Yin, Yanfeng Sun, and Nan Zhang.
A block-matching based intra frame prediction for
H.264/AVC. In 2006 IEEE International Conference on
Multimedia and Expo, pages 705–708. IEEE, 2006.

[65] Ren Yang, Fabian Mentzer, Luc Van Gool, and Radu
Timofte. Learning for video compression with hierarchi-
cal quality and recurrent enhancement. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 6628–6637, 2020.

[66] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno
Sinopoli. A Control-theoretic Approach for Dynamic
Adaptive Video Streaming over HTTP. In ACM SIG-
COMM Computer Communication Review, volume 45,
pages 325–338. ACM, 2015.

[67] Sangki Yun, Daehyeok Kim, Xiaofan Lu, and Lili Qiu.
Optimized layered integrated video encoding. In INFO-
COM, pages 19–27. IEEE, 2015.

[68] Alireza Zare, Alireza Aminlou, Miska M Hannuksela,
and Moncef Gabbouj. HEVC-compliant tile-based
streaming of panoramic video for virtual reality appli-
cations. In Proceedings of the 24th ACM international
conference on Multimedia, pages 601–605. ACM, 2016.

[69] Xu Zhang, Yiyang Ou, Siddhartha Sen, and Junchen
Jiang. Sensei: Aligning video streaming quality with
dynamic user sensitivity. In NSDI, pages 303–320, 2021.

[70] Shiping Zhu, Shupei Zhang, and Chenhao Ran. An im-
proved inter-frame prediction algorithm for video cod-
ing based on fractal and H.264. IEEE Access, 5:18715–
18724, 2017.

Figure 20: An example of a base neural codec and its internal logic to encode and decode a video frame in a single iteration.

A Appendix. Example Neural Codec

Swift’s layered neural coding is designed as a generic ex-
tension that can be implemented on top of any neural codec,
and hence throughout the paper, we considered neural codec
as a blackbox without discussing the internal details of codec
logic. In this section, we present an example codec for a bet-
ter understanding of neural coding principles. This example
follows the design of VCII [60], the same design we also used
in our implementation.

In general, most of the existing neural codecs follow tra-
ditional concepts of I, P, and B frames when compressing
a video [22, 43, 60]. An I frame is compressed much like
an image with no reference, and P/B frames reference other
frames for reconstruction as they encode motion and residual
information relative to the reference frames. Swift adopts a
similar approach of compressing I frames and P/B frames sep-
arately by using i) a neural image codec [55] for compressing
I frames, and ii) a neural video codec [60] for compressing
P/B frames. The output for each of these frames after the en-
coding stage from the Autoencoder, is a neural representation,

i.e., code bits with floating point values. The code bits for I
frames represent directly the frame data, however, the code
bits P/B frames represent motion and residual information
with respect to the reference frames.

Figure 20 shows an example codec structure followed by
[55,60] as well as Swift. It contains three key parts: encoder,
binarizer, and decoder. The encoder takes the original video
frame as input and applies convolutions (along with an LSTM
block) to downscale the frame into a low dimensional vector.
In our example, we have four such blocks, each downscaling
the frame resolution by half. For example, when we encode
a 1280× 720 frame, the output of encoding stage contains
80×45×512 resolution with floating point representations.
After the encoding, a binarizer converts the floats to a binary
bitstream with the same resolution but packs each float in b
bits. Optionally, these bits can be further passed through an
entropy encoder [54] to compress the bitstream efficiently.
During the decoding process, a reverse process is learned by
upsampling the frame resolution at each stage in the network,
achieving the original resolution at the final stage.

	Introduction
	Motivation
	Limitations of Today's Video Streaming Due to Regular Coding
	Layered Coding
	Challenges of Adopting Traditional Layered Coding in Video Streaming
	Layered Coding using Neural Codecs

	Swift
	Overview
	Layered Neural Encoder
	Layered Neural Decoder

	Streaming with Layered Neural Codecs
	Scaling the Decoder based on Compute Capacity
	Adapting ABR for Layered Neural Codecs

	Implementation and System Setup
	Layered Codec Implementation
	Streaming Implementation

	Swift Evaluation
	Evaluation Methodology
	End-to-end Streaming Results
	End-to-end QoE Results
	Bandwidth Benefits
	Reaction to Bandwidth Fluctuations

	Compression Results
	Compression Efficiency
	Encoding and Decoding Latency

	Discussion
	Additional Opportunities of Neural Codecs
	Limitations of Neural Codecs

	Related Work
	Conclusions
	Appendix. Example Neural Codec

